

Instrucciones de uso

IFU095-ES

Número de versión: 2.0

Fecha de edición: marzo de 2024

ASTX17.1(24)-IVD

ASTX17.1(24)-B-IVD

ASTX17.1(96)-A-IVD

ASTX17.1(96)-B-IVD

ASTX9.1(96)-A-IVD

ASTX9.1(96)-B-IVD

CareDx Pty Ltd, 20 Collie Street, Fremantle, WA 6160, Australia

CareDx AB, Franzéngatan 5, SE-112 51 Estocolmo, Suecia

Qarad BV, Cipalstraat 3, 2440 Geel, Bélgica

CH **REP**

Qarad Suisse S.A., World Trade Center, Avenue Gratta-Paille 2 1018 Lausanne, Suiza

CHRN: CHRN-AR-20002058

© 2020-2024 CareDx, Inc. Todas las marcas de servicio o las marcas comerciales son propiedad o se utilizan con licencia de CareDx, Inc. o sus afiliados. Todos los derechos reservados.

Índice

L.	Desc	ripción general	
	1.1	Principio	3
	1.2	Uso previsto	3
	1.3	Contenido genético dirigido de AlloSeq Tx	4
	1.4	Contenido del kit AlloSeq Tx y requisitos de almacenamiento	4
	1.5	Limitaciones y contraindicaciones	6
	1.6	Requisitos de la muestra	6
	1.7	Especificidad analítica / Sustancias interferentes	6
	1.8	Características de rendimiento	8
	1.9	Precisión	8
	1.10	Especificidad	8
	1.11	Reproducibilidad y repetibilidad	9
	1.12	Supuestos	9
	1.13	Seguridad	9
2.	Prepa	aración de la librería (flujo de trabajo Early Pooling)	13
	2.0 Intro	oducción al protocolo	13
	2.1 Prep	paración de la muestra	13
	2.2 Prep	paración de la librería	14
	2.3 Sele	cción de tamaño y purificación	16
	2.4 Cua	ntificación Qubit (opcional)	19
	2.5 Visu	alización en TapeStation (opcional)	19
3.	Capti	ura híbrida (flujo de trabajo Early Pooling)	21
	3.0 Intro	oducción al protocolo	21
	3.1 Hibr	idación de sondas	21
	3.2 Cap	tura	22
	3.3 PCR	posterior al enriquecimiento	24
	3.4 Puri	ficación de PCR posterior al enriquecimiento	24
	3.5 Cua	ntificación Qubit	26
	3.6 Visu	alización en TapeStation (opcional)	26
1.		aración de la librería(flujo de trabajo Original)	
	4.0 Intro	oducción al protocolo	27
		paración de la muestra	
	4.2 Prep	paración de la librería	28
	4.3 Sele	cción de tamaño y purificación	31
	4.4 Cua	ntificación Qubit (opcional)	33
	4.5 Visu	alización en TapeStation (opcional)	33
5.	Capti	ura híbrida (flujo de trabajo Original)	35
	5.0 Intro	oducción al protocolo	35
	_	ıpación de muestras	
	5.2 Con	centración de pools de librerías (opcional)	35
		idación de sondas	
	5.4 Cap	tura	38
	5.5 PCR	posterior al enriquecimiento	39
	5.6 Puri	ficación de PCR posterior al enriquecimiento	40
		ntificación Qubit	
	5.8 Visu	alización en TapeStation (opcional)	41
ô.	Secu	enciación	43
	6.0 Intro	oducción al protocolo	43
	-	paración de PhiX	
	6.2 Dilu	ción y desnaturalización para MiSeq	44

	6.3 Dilución y desnaturalización para MiniSeq	45
	6.4 Dilución para iSeq	
	7. Análisis de secuencias	
8.	3. Guía de solución de problemas	47
	9. Información complementaria	
	Licencia	48
	Insumos y equipo necesarios pero no suministrados	48
1(.0. Información de contacto	51
1:	1. Referencias	52

1. Descripción general

1.1 Principio

AlloSeq Tx es el nombre de la familia de productos para la secuenciación de genes diana, diseñada para ayudar a determinar la compatibilidad genética entre pacientes de trasplante y posibles donantes. AlloSeq Tx aprovecha la tecnología de captura híbrida para enriquecer los genes de interés desde una preparación de librería genómica completa. El uso de la tecnología de captura híbrida, a diferencia de las técnicas tradicionales de "long-range PCR", tiene ventajas en el flujo de trabajo y permite la flexibilidad del contenido variable de genes/secuencias sin necesidad de cambios en el flujo de trabajo.

A continuación se resume el principio del flujo de trabajo del ensayo AlloSeq Tx:

Etapa 1: Preparación de la librería: Fragmentación y tagmentación simultáneas del ADN, PCR de indexación, purificación y selección del tamaño,

Etapa 2: Captura híbrida (enriquecimiento): Sample pooling ¹ (flujo de trabajo original o flujo de trabajo de early pooling), hibridación de la sonda, captura de los fragmentos unidos a la sonda con beads magnéticos de estreptavidina, PCR de enriquecimiento final, purificación y cuantificación,

Etapa 3: Secuenciación: Dilución y desnaturalización y secuenciación en un secuenciador Illumina,

Etapa 4: Análisis: Genotipado en software AlloSeq Assign

¹ El flujo de trabajo de Early Pooling agrupa las muestras inmediatamente después de la indexación en un único tubo para todos los pasos posteriores, eliminando la selección de tamaño y la purificación basada en placas, así como el paso opcional de concentración. Este flujo de trabajo permite al usuario tomar muestras hasta la secuenciación en un solo turno de trabajo. Este flujo de trabajo es adecuado para los laboratorios que no utilizan automatización y prefieren un protocolo con menos tiempo de trabajo, menos uso de consumibles y un 46 % menos de pasos de pipeteo frente al flujo de trabajo original. El formato basado en placas del flujo de trabajo original es adecuado para laboratorios que optan por la automatización de este procedimiento.

Los kits AlloSeg Tx incluyen:

- Reactivos para preparar librerías genómicas completas,
- Sondas biotiniladas complementarias para capturar secuencias dianas, y
- Reactivos para enriquecer las dianas capturadas para la secuenciación.

Recomendamos a todos los usuarios que lean las instrucciones de uso completas, especialmente la sección *Seguridad*, antes de iniciar el procedimiento. Los procedimientos para el uso del software AlloSeq Assign se encuentran en las instrucciones de uso del software AlloSeq Assign.

1.2 Uso previsto

AlloSeq Tx es el nombre de la familia de productos para la secuenciación de genes dirigidos, diseñada para ayudar a determinar la compatibilidad genética entre pacientes de trasplante y posibles donantes; incluidas sondas para enriquecimiento selectivo de hasta 17 loci.

Los kits de tipaje AlloSeq Tx 17 son pruebas cualitativas para la tipaje de ADN de HLA-A, B, C, E, F, G, H, DRB1/3/4/5, DQA1, DQB1, DPA1, DPB1, MICA y MICB para ayudar en el cotejo genético para el trasplante de órganos o células madre.

Los kits de tipaje AlloSeq Tx 9 son pruebas cualitativas para el tipaje de ADN de HLA-A, B, C, DRB1/3/4/5, DQB1 y DPB1 para ayudar en el cotejo genético para el trasplante de órganos o células madre.

El producto está diseñado para su uso con los secuenciadores Illumina MiSeq, MiniSeq e ISeq, junto con el software de interpretación AlloSeq Assign.

El dispositivo está diseñado para ser utilizado por personal debidamente capacitado, con conocimiento de la frecuencia de los tipos de HLA en su población, en laboratorios debidamente regulados que realizan tipaje de tejidos (HLA) para donantes y receptores de trasplantes.

Los productos AlloSeq Tx son para uso profesional únicamente y no deben utilizarse como única base para tomar decisiones clínicas. Los kits AlloSeq Tx no se utilizan para el diagnóstico de enfermedades.

1.3 Contenido genético dirigido de AlloSeq Tx

Nombre del producto	Código de producto	Genes dirigidos	Tamaño del kit	Secuenciación ¹
AlloSeq Tx17	ASTX17.1(24)-IVD	HLA-A, -B, -C, -E, -F, -	24 preparaciones	≤24 muestras en MiSeq Micro flow cell
	ASTX17.1(24)-B-	G, -H, -DRB1/3/4/5, -	de librería	≤6 muestras en MiSeq Nano flow cell
	IVD	DQA1, -DQB1, -	4	≤24 muestras en iSeq
		DPA1, -DPB1, MICA y	enriquecimientos	≤24 muestras en MiniSeq Mid Output
		MICB	(entre 6 y 24	flow cell
			muestras por	
			enriquecimiento)	
	ASTX17.1(96)-A-	HLA-A, -B, -C, -E, -F, -	96 preparaciones	≤96 muestras en MiSeq v2 Standard
	IVD	G, -H, -DRB1/3/4/5, -	de librería	flow cell
	ASTX17.1(96)-B-	DQA1, -DQB1, -	8	≤24 muestras en MiSeq Micro flow cell
	IVD	DPA1,	enriquecimientos	≤6 muestras en MiSeq Nano flow cell
		-DPB1, MICA y MICB	(entre 12 y 96	≤24 muestras en iSeq
			muestras por	≤24 muestras en MiniSeq Mid Output
			enriquecimiento)	flow cell
AlloSeq Tx9	ASTX9.1(96)-A-IVD	HLA-A, -B, -C, -	96 preparaciones	≤96 muestras en MiSeq Standard flow
	ASTX9.1(96)-B-IVD	DRB1/3/4/5, -DQB1	de librería	cell
		y -DPB1	8	≤24 muestras en MiSeq Micro flow cell
			enriquecimientos	≤6 muestras en MiSeq Nano flow cell
			(entre 12 y 96	≤24 muestras en iSeq
			muestras por	≤24 muestras en MiniSeq Mid Output
			enriquecimiento)	flow cell

¹Los números de muestras y flow cells que aparecen en esta tabla se basan en la validación del kit AlloSeq Tx. Estas cifras pueden utilizarse a título indicativo y ser verificadas posteriormente por laboratorios individuales.

1.4 Contenido del kit AlloSeq Tx y requisitos de almacenamiento

Cuando se almacenan de acuerdo con las especificaciones de temperatura que se indican a continuación, los componentes del kit se pueden utilizar hasta la fecha de vencimiento indicada en los recipientes exteriores del kit, y pueden tolerar hasta 12 ciclos de congelación y descongelación. Después de su uso, los kits/componentes deben devolverse inmediatamente a condiciones de almacenamiento.

Los kits NO deben utilizarse después de su fecha de caducidad.

Reactivos Caja 1 de 5, almacenar a -15 a -25 °C.

Reactivo	Cantidad (24 pruebas)	Tamaño/tipo de tubo (24 pruebas)	Cantidad (96 pruebas)	Tamaño/tipo de tubo (96 pruebas)
Beads de tagmentación	1	0.5mL	1	1.5mL
Tampón de tagmentación	1	0.5mL	1	1.5mL
Mezcla-1 de PCR	N/D	N/D	1	5mL

Reactivos Caja 2 de 5, almacenar a 15 a 30 °C.

Reactivo	Cantidad (24 pruebas)	Tamaño/tipo de tubo (24 pruebas)	Cantidad (96 pruebas)	Tamaño/tipo de tubo (96 pruebas)
Tampón de parada	1	1.5mL	2	2mL
Tampón de lavado de tagmentación	2	5mL	1	50mL

Reactivos Caja 3 de 5, almacenar a -15 a -25 °C.

Reactivo	Cantidad	Tamaño/tipo	Cantidad	Tamaño/tipo
	(24	de tubo (24	(96	de tubo (96
	pruebas)	pruebas)	pruebas)	pruebas)
Cebadores de indexación AlloSeq Tx	1 juego (10 unidades)	Tubo FluidX	1 placa	Placa de 96 pocillos

Reactivos, caja 4 de 5, almacenar de -15 a -25 °C

Reactivo	Cantidad (24 pruebas)	Tamaño/tipo de tubo (24 pruebas)	Cantidad (96 pruebas)	Tamaño/tipo de tubo (96 pruebas)
Sondas AlloSeq Tx específicas para el producto	1	0.5mL	1	0.5mL
Mezcla de PCR	1	1.5mL	N/D	N/D
Mezcla-2 de PCR	N/D	N/D	1	0.5mL
Cebadores de PCR	1	0.5mL	1	0.5mL
Tampón de hibridación 1	1	1,5 mL, cónico	1	1,5 mL, Cónico
Tampón de lavado de captura	4	1,5 mL, ámbar cónico	8	1,5 mL, ámbar cónico
Tampón de elución de captura 1	1	0.5mL	1	0.5mL
2N NaOH	1	0.5mL	2	0.5mL

Reactivos Caja 5 de 5, almacenar a 2-8 °C

Reactivo	Cantidad (24 pruebas)	Tamaño/tipo de tubo (24 pruebas)	Cantidad (96 pruebas)	Tamaño/tipo de tubo (96 pruebas)
Purification Beads	1	5mL	N/D	N/D
Purification Beads-1	N/D	N/D	3	5mL
Purification Beads-2	N/D	N/D	1	0.5mL
Tampón de resuspensión	2	1.5mL	2	5mL
Capture Beads	1	1.5mL	1	5mL
Tampón de hibridación 2	1	0.5mL	1	0.5mL
Tampón de elución de captura 2	1	0.5mL	1	0.5mL

1.5 Limitaciones y contraindicaciones

- Se recomienda encarecidamente que el usuario valide estos kits antes de su implementación en el laboratorio utilizando muestras cuyo genotipo haya sido determinado por otros procedimientos basados en la estructura molecular.
- Se recomienda encarecidamente que el usuario siga todas las instrucciones proporcionadas en el etiquetado del producto. Las desviaciones respecto al procedimiento descrito no se recomiendan, pueden no ser soportadas y pueden provocar errores de tipaje.
- Se recomienda incluir un control positivo (ADN humano) y un control negativo (NTC) (con agua estéril en lugar de ADN) en cada ciclo de preparación de la librería. El control positivo debe producir una librería cuantificable (medida mediante Qubit o métricas de secuenciación de cobertura), y la secuencia resultante debe estar en concordancia con el genotipo esperado de la muestra. No debe haber una librería cuantificable (medida por Qubit o reportada como Cobertura Baja en Assign) en el control de plantilla negativo para cada experimento. Si se produce una librería cuantificable para el control negativo, la carrera debe repetirse.
- El ensayo AlloSeq Tx secuencia fragmentos de ADN con un tamaño promedio de 500 bp. Esto significa que los polimorfismos con una separación superior a 500 bp no pueden ser escalonados, lo que puede dar lugar a ambigüedades heterocigóticas.

1.6 Requisitos de la muestra

Tipo de muestra:

ADN genómico humano de alto peso molecular (suspendido en tampón Tris/EDTA y OD260/280> 1,8) de muestras de sangre completa. NO utilice muestras de sangre entera que contengan heparina.

La cantidad recomendada de ADN genómico humano de alto peso molecular es de 100-1000 ng/µl. Las pruebas internas han demostrado que también se pueden utilizar muestras con cantidades de ADN de tan solo 50 ng. También se obtuvieron genotipos correctos a partir de ADN de mala calidad o fragmentado.

Estabilidad de la muestra:

Almacenamiento: La sangre completa debe recogerse en anticoagulantes ACD o EDTA. El ADN puede aislarse de las muestras hasta 2 semanas después de la extracción inicial de sangre, aunque se recomienda que las muestras se procesen en los 2 o 3 días siguientes a la extracción. Las muestras de sangre completa congelada pueden almacenarse entre -20 °C y -70 °C durante al menos 1 año sin que ello afecta a la calidad o la cantidad del ADN aislado. (Ref ASHI Laboratory Manual Vol 2).

Métodos de extracción de ADN:

El ensayo AlloSeq Tx se ha validado con el minikit QIAamp DNA Blood (nº de catálogo 51104), el kit EZ1 DNA Blood 350 μl (nº de catálogo 951054) y Promega Maxwell. Alternativamente, el ADN puede extraerse utilizando otros métodos y equipos validados por el usuario para aislar ADN de alto peso molecular.

1.7 Especificidad analítica / Sustancias interferentes

CareDx Pty Ltd ha identificado todas las sustancias potencialmente interferentes conocidas que podrían afectar el ensayo. Consulte la tabla siguiente.

Inhibidor	Fuente potencial	Riesgo	Comentarios
EDTA	Tampón TE, tubos de extracción de sangre	Muy bajo	Resuspenda el ADN en Tris-HCl pH8 o TE con <0,1 mM EDTA. Utilice kits comerciales de preparación de ADN sanguíneo. No resuspenda en EDTA > 0,1 mM.

Inhibidor	Fuente potencial	Riesgo	Comentarios
Alcoholes	Etanol, isopropanol, alcohol isoamilo	Bajo	Asegúrese de secar al aire los pellets o los beads de ADN e inspeccionar visualmente en busca de gotas de etanol (1 % de etanol = 1,25 ul 80 % de etanol en una reacción PCR de 100 ul). Hay múltiples pasos de lavado con etanol al 80 % en el protocolo AlloSeq Tx, lo que implica que la inhibición debida al arrastre de etanol sea un riesgo bajo, pero ligeramente más alto que otros factores.
Exceso de sales	KCI, NaCI, CsCI, NAAC	Muy bajo	Asegúrese de lavar a fondo los pellets o los beads de ADN con etanol al 80 %. Asegúrese de que el OD 260/230 para iniciar el ADN genómico es ~2
Sales caotrópicas	Guanidinio Cl; MgCl2; urea	Muy bajo	Asegúrese de lavar a fondo los pellets o los beads de ADN con etanol al 80 %. Asegúrese de que el OD 260/230 para iniciar el ADN genómico es ~2
Fenol: cloroformo	Arrastre orgánico	Muy bajo	Un componente del procedimiento comercial de extracción de ADN Trizol ampliamente utilizado. Asegúrese de lavar a fondo los pellets o los beads de ADN con etanol al 80 %. Asegúrese de que el OD 260/230 para iniciar el ADN genómico es ~2
Proteínas	BSA, PEG, albúmina sanguínea	Muy bajo	Utilice kits comerciales de preparación de ADN sanguíneo. Asegúrese de que el OD 260/280 para iniciar el ADN genómico es > 1,8
Heme, hemoglobina, inmunoglobulinas	Sangre	Muy bajo	Evite el uso de muestras de sangre que presenten hemólisis intensa. Utilice kits comerciales de preparación de ADN sanguíneo. Asegúrese de que el OD 260/280 para iniciar el ADN genómico es > 1,8
Detergentes/DDT	Na deoxicolato, sarkosyl, SDS, NP40, Tween 20, Triton X- 100, N-octil glucósido	Muy bajo	Asegúrese de lavar a fondo los pellets o los beads de ADN con etanol al 80 %. Asegúrese de que el OD 260/230 para iniciar el ADN genómico es ~ 2
Proteasas	Proteinasa K, manipulación de muestras	Muy bajo	Utilice kits comerciales de preparación de ADN sanguíneo o saliva. Use guantes en todo momento
Nucleasas	Manipulación de muestras, enzimas de restricción, nucleasa microcócica	Muy bajo	Utilice kits comerciales de preparación de ADN sanguíneo. Use guantes en todo momento
ADN/ARN exógeno	Arrastre, contaminación	Muy bajo	Prepare ADN genómico en un área específica pre-PCR
Transportadores	ARN, heparina, glucógeno	Muy bajo	Use kits comerciales de preparación de ADN sanguíneo y/o evite los tubos de extracción de sangre con heparina
Exceso de iones metálicos	Mg2+ de tampón PCR, iones de Fe	Muy bajo	Asegúrese de lavar a fondo los pellets o los beads de ADN con etanol al 80 %. Asegúrese de que el OD 260/230 para iniciar el ADN genómico es ~ 2
Medicamentos antivirales (por ejemplo, aciclovir)	Sangre	Muy bajo	Utilice kits comerciales de preparación de ADN sanguíneo. Asegúrese de que el OD 260/280 para iniciar el ADN genómico es > 1,8

Inhibidor	Fuente potencial	Riesgo	Comentarios
Polvo de guante	Guantes empolvados Muy bajo		Use guantes sin polvo
Tubos de PCR irradiados por UV	Tratamiento UV de tubos de PCR	Muy bajo	Evite el tratamiento UV de los productos de plástico
Biotina	De productos farmacéuticos que interactúan con la estreptavidina	Muy bajo	Existen numerosos lavados de purificación entre la recogida de muestras y el paso de captura híbrida dentro del protocolo que permitirán la eliminación de las moléculas de biotina. En el caso de un ensayo de captura híbrido, la presencia de biotina (que como se ha descrito anteriormente es poco probable) no dará lugar a un resultado erróneo. Podría causar una reducción de la eficiencia de enriquecimiento que se detectaría como un bajo rendimiento de enriquecimiento o bien no dar ningún resultado.

1.8 Características de rendimiento

El rendimiento del ensayo se evaluó mediante un panel de muestras de ADN con genotipos conocidos, incluidas muestras de control internas de CareDx, normas de referencia de HLA de talleres de histocompatibilidad internacionales (IHW) y muestras obtenidas del Intercambio de ADN de HLA Internacional de la Universidad de California, Los Ángeles (UCLA). Se evaluó el rendimiento de preparación, enriquecimiento y secuenciación de la librería con arreglo a criterios de aceptación definidos.

1.9 Precisión

El producto AlloSeq Tx junto con el software AlloSeq Assign están diseñados para cumplir con la norma ASHI (American Society for Histocompatibility and Immunogentics) y con la norma EFI (European Federation of Immunogenetics) para el tipaje HLA.

Resumen del resultado obtenido de los estudios de verificación y validación:

MÉTRICA	PANEL	TAMAÑO DEL PANEL (n)	RESULTADO
Concordancia de genotipado	Interna	190	100 %
Concordancia de genotipado	UCLA	24	98,12 %
Concordancia de genotipado	IHW	48	98,06 %
Concordancia de genotipado	Externa	124	99,54 %
Total/Concordancia general			99,49%

En todos los casos de discordancia observados en los estudios de verificación/validación, se cree que la discordancia surge de las limitaciones del método o tecnología de tipaje anterior.

1.10 Especificidad

Los datos han demostrado que una especificidad tan baja como el 12 % no influye en el ensayo, mientras que los valores típicos de especificidad caen en el rango de 64 y 92 %. La especificidad completa es poco probable y sería un indicador de posibles problemas de calidad. Aunque la estrategia de diseño de la sonda hace que la probabilidad de que falten alelos sea improbable, es probable que el paradigma de sensibilidad frente a especificidad sea verdadero. Es decir, un cierto grado de especificidad reducida garantizará una sensibilidad completa y los alelos, incluidos los nuevos alelos, se secuenciarán con éxito.

1.11 Reproducibilidad y repetibilidad

Se ha demostrado que el producto AlloSeq Tx junto con el software AlloSeq Assign proporciona resultados equivalentes en lotes en un estudio de verificación de lote a lote y en laboratorios, usuarios e instrumentos que se han probado en verificación y validación en cuatro centros externos. Se ha comprobado que el producto AlloSeq Tx proporciona resultados equivalentes para la misma muestra en series repetidas.

1.12 Supuestos

- Los instrumentos están correctamente calibrados y bajo un plan de mantenimiento según sea necesario.
- Los procedimientos operativos estándar (SOP) están establecidos y controlados.
- El kit lo utiliza personal de laboratorio cualificado y autorizado
- Los reactivos se utilizan dentro de las fechas de vencimiento indicadas.
- Los reactivos de diferentes lotes de kits NO se utilizan juntos. Esto puede afectar al rendimiento del kit.
- Solo se utilizan los reactivos registrados como no incluidos pero necesarios en este documento.
- Se debe tener cuidado para evitar la contaminación cruzada de las muestras de ADN o mezcla de muestras
- Las puntas de barrera se utilizan durante todo el procedimiento.
- Se debe tener cuidado en todas las etapas para evitar salpicaduras
- Los libros de trabajo suministrados por el fabricante se utilizan conjuntamente con este documento

1.13 Seguridad

Siga las prácticas generales de seguridad del laboratorio y las prácticas de prevención de la contaminación en salas limpias al realizar este procedimiento. A través del proceso de gestión de riesgos de CareDx Pty Ltd, todos los riesgos se han mitigado hasta un límite aceptable. Se deben seguir las instrucciones de uso evitar situaciones de uso peligroso. Este kit contiene materiales peligrosos. Consulte las hojas de datos de seguridad y tome todas las precauciones necesarias en la manipulación y eliminación.

COMPONENTE DEL	PICTOGRAMAS	ADVERTENCIA DE SEGURIDAD
KIT		
TAMPÓN DE		Palabra de señal: Peligro
TAGMENTACIÓN		
Contiene N,N-		Declaraciones de peligro:
dimetilformamida		H319 - Causa irritación ocular grave
		H332 - Nocivo por inhalación
		H350 - Puede causar cáncer
		H360 - Puede dañar la fertilidad o al feto
		Declaraciones de precaución - UE (§28, 1272/2008)
		P201 - Obtener instrucciones especiales antes de su uso
		P202 - No manipular hasta que se hayan leído y entendido todas las precauciones de
		seguridad
		P261 - Evitar respirar polvo/humo/gas/niebla/vapores/aerosol
		P270 - No comer, beber ni fumar cuando se está manipulando el producto
	·	P280 - Utilizar guantes protectores/ropa protectora/protección ocular/protección facial
		P264 - Lavarse bien la cara, las manos y toda la piel expuesta después de la
		manipulación
		P272 - No debe permitirse sacar ropa de trabajo contaminada fuera del lugar de trabajo
		P308 + P313 - EN CASO DE EXPOSICIÓN MANIFIESTA O PRESUNTA: Solicitar
		asistencia/atención médica
		P304 + P340 - EN CASO DE INHALACIÓN: Sacar a la víctima al exterior y mantenerla en
		reposo en una posición cómoda para respirar
		P313 - Solicitar asistencia/atención médica
		P305 + P351 + P338 - EN CASO DE CONTACTO CON LOS OJOS: Lavar cuidadosamente
		con agua durante varios minutos. Quitarse las lentes de contacto, si se puede hacer
		fácilmente. Continuar con el lavado
		P337 + P313 - SI PERSISTE LA IRRITACIÓN OCULAR: Solicitar asistencia/atención médica
		P405 - Almacenar bajo llave
		P501 - Eliminar el contenido/recipiente en una planta de eliminación de residuos
		aprobada
MEZCLA DE PCR		Palabra de señal: Peligro
Contiene cloruro de		
tetrametilamonio		Declaraciones de peligro
	•	H302 - Nocivo por inhalación
		H371 - Puede causar daños en los órganos
	X	H412 - Nocivo para la vida acuática con efectos duraderos
		Declaraciones de precaución - UE (§28, 1272/2008)
		P260 - No respirar polvo/humo/gas/niebla/vapores/aerosol
		P270 - No comer, beber ni fumar cuando se está manipulando el producto
		P280 - Utilizar guantes protectores/ropa protectora/protección ocular/protección facial
		P264 - Lavarse bien la cara, las manos y toda la piel expuesta después de la
	•	manipulación
		P272 - No debe permitirse sacar ropa de trabajo contaminada fuera del lugar de trabajo
		P273 - Evitar la liberación al medio ambiente
		P308 + P313 - EN CASO DE EXPOSICIÓN MANIFIESTA O PRESUNTA: Solicitar
		asistencia/atención médica
		P301 + P312 - EN CASO DE INGESTIÓN: Llamar a un CENTRO DE TOXICOLOGÍA o a un
		médico si se siente mal
		P330 - Enjuagar la boca
		P405 - Almacenar bajo llave
		P501 - Eliminar el contenido/recipiente en una planta de eliminación de residuos
		aprobada

COMPONENTE DEL	PICTOGRAMAS	ADVERTENCIA DE SEGURIDAD
KIT	FICTOGRAMIAS	ADVENTENCIA DE SEGONIDAD
2N NaOH		Palabra de señal: Peligro
Contiene hidróxido de		
sodio	Pa	Declaraciones de peligro
		H314 - Causa quemaduras graves en la piel y daños en los ojos
		H318 - Causa daños oculares graves
		Declaraciones de pressurión IIF (\$20, 1272/2009)
	•	Declaraciones de precaución - UE (§28, 1272/2008) P260 - No respirar polvo/humo/gas/niebla/vapores/aerosol
		P264 - Lavarse bien la cara, las manos y toda la piel expuesta después de la
		manipulación
		P280 - Utilizar guantes protectores/ropa protectora/protección ocular/protección facial
		P301 + P330 + P331 - EN CASO DE INGESTIÓN: enjuagarse la boca. NO inducir el vómito
		P303 + P361 + P353 - EN CASO DE CONTACTO CON LA PIEL (o el cabello): Quitarse la
		ropa contaminada inmediatamente. Lavar la piel con agua/ducharse P363 - Lavar la ropa contaminada antes de volver a usarla
		P310 - Llamar inmediatamente a un CENTRO DE TOXICOLOGÍA o a un médico
		P304 + P340 - EN CASO DE INHALACIÓN: Sacar a la víctima al exterior y mantenerla en
		reposo en una posición cómoda para respirar
		P305 + P351 + P338 - EN CASO DE CONTACTO CON LOS OJOS: Lavar cuidadosamente
		con agua durante varios minutos. Quitarse las lentes de contacto, si se puede hacer
		fácilmente. Continuar con el lavado P405 - Almacenar bajo llave
		P501 - Eliminar el contenido/recipiente de acuerdo con las regulaciones locales,
		regionales, nacionales e internacionales según corresponda
CAPTURE BEADS		Palabra de señal: Peligro
Contiene formamida		
		Declaraciones de peligro
		H351 - Se sospecha que causa cáncer H360 - Pueden dañar la fertilidad o al feto
		H373 - Pueden provocar daños en los órganos por exposición prolongada o repetida
	·	
		Declaraciones de precaución - UE (§28, 1272/2008)
		P201 - Obtener instrucciones especiales antes de su uso
		P202 - No manipular hasta que se hayan leído y entendido todas las precauciones de seguridad
		P260 - No respirar polvo/humo/gas/niebla/vapores/aerosol
		P270 - No comer, beber ni fumar cuando se está manipulando el producto
		P280 - Utilizar guantes protectores/ropa protectora/protección ocular/protección facial
		P264 - Lavarse bien la cara, las manos y toda la piel expuesta después de la
		manipulación
		P272 - No debe permitirse sacar ropa de trabajo contaminada fuera del lugar de trabajo P308 + P313 - EN CASO DE EXPOSICIÓN MANIFIESTA O PRESUNTA: Solicitar
		asistencia/atención médica
		P405 - Almacenar bajo llave
		P501 - Eliminar el contenido/recipiente en una planta de eliminación de residuos
		aprobada
TAMPÓN DE		Palabra de señal: Peligro
HIBRIDACIÓN 1		Declaraciones de peligro
Contiene formamida		H351 - Se sospecha que causa cáncer
		H360 - Puede dañar la fertilidad o al feto
		H373 - Puede causar daño a los órganos mediante exposiciones prolongadas o repetidas
		D
		Declaraciones de precaución - UE (§28, 1272/2008)
		P201 - Obtener instrucciones especiales antes de su uso P202 - No manipular hasta que se hayan leído y entendido todas las precauciones de
		seguridad
		P261 - Evitar respirar polvo/humo/gas/niebla/vapores/aerosol
		P270 - No comer, beber ni fumar cuando se está manipulando el producto

COMPONENTE DEL	PICTOGRAMAS	ADVERTENCIA DE SEGURIDAD
		P280 - Utilizar guantes protectores/ropa protectora/protección ocular/protección facial P264 - Lavarse bien la cara, las manos y toda la piel expuesta después de la manipulación P272 - No debe permitirse sacar ropa de trabajo contaminada fuera del lugar de trabajo P308 + P313 - EN CASO DE EXPOSICIÓN MANIFIESTA O PRESUNTA: Solicitar asistencia/atención médica P405 - Almacenar bajo llave P501 - Eliminar el contenido/recipiente en una planta de eliminación de residuos aprobada
TAMPÓN DE PARADA Contiene dodecil sulfato de sodio	•	Palabra de señal: Advertencia Declaraciones de peligro H319 - Causa irritación ocular grave Declaraciones de precaución - UE (§28, 1272/2008) P264 - Lavarse bien la cara, las manos y toda la piel expuesta después de la manipulación P280 - Utilizar guantes protectores/ropa protectora/protección ocular/protección facial P305 + P351 + P338 - EN CASO DE CONTACTO CON LOS OJOS: Lavar cuidadosamente con agua durante varios minutos. Quitarse las lentes de contacto, si se puede hacer fácilmente. Continuar con el lavado. P337 + P313 - SI PERSISTE LA IRRITACIÓN OCULAR: Solicitar asistencia/atención médica

NOTA: El componente 'Beads de purificación' contiene azida sódica (<0,1 %) que no se considera una concentración peligrosa de acuerdo con EC 1272/2008 (CLP/GHS), las Directivas 1999/45EC y 67/548/CEE o US-OSHA (HCS 29 CFR 1910.1200) y UN GHS.

Para obtener más información sobre todos los materiales peligrosos incluidos en el kit AlloSeq Tx, consulte la hoja de datos de seguridad TEC478_AlloSeq Tx en www.caredx.com.

2. Preparación de la librería (flujo de trabajo Early Pooling)

2.0 Introducción al protocolo

- Siga el protocolo AlloSeq Tx a continuación en el orden que se muestra y utilizando los parámetros especificados.
- Antes de continuar, confirme el contenido del kit y asegúrese de que dispone de los insumos y el equipo necesarios.
- Para facilitar su uso, los pasos del protocolo para la preparación de la librería también se detallan en *IFU095-5_AlloSeq Tx Early Pooling Workbook CE IVD*. Las referencias al cuaderno de trabajo del Capítulo 2 pertenecen a este cuaderno.

2.1 Preparación de la muestra

- 1. Introduzca el ID del experimento, la descripción, el operador y la fecha en el cuaderno de trabajo.
- 2. Seleccione el conjunto de sondas AlloSeq que se va a utilizar para el experimento en el menú desplegable del cuaderno de trabajo.
- 3. Seleccione el tipo de secuenciador que se va a utilizar en el menú desplegable del cuaderno. Una vez seleccionado el tipo de secuenciador, las instrucciones de secuenciación aparecerán en el cuaderno de trabajo.
- 4. Introduzca el ID de las muestras que se van a probar en la sección amarilla del diseño de placa del cuaderno de trabajo, según la configuración deseada.

NOTA: Solamente se pueden introducir caracteres alfanuméricos. Los ID de muestra duplicados se señalizarán en rojo para pedir al usuario que los corrija. Es un requisito del software del secuenciador tener solamente ID de muestra únicos en una carrera. No introduzca ninguna información para los pocillos que no estén destinados a contener ninguna muestra.

- 5. Seleccione el conjunto de índices deseado de la lista desplegable naranja bajo Diseño de la placa.
- 6. Si es necesario, y utilizando el formato de índice de tubos, el orden del índice i7 puede modificarse. Seleccione el índice i7 alternativo que va a utilizar en la lista desplegable de opciones para la columna requerida. Si se seleccionan índices i7 duplicados, las celdas se señalizarán en rojo para pedir al usuario que las corrija.
- 7. Si es necesario, y utilizando el formato de índice de tubos, el orden del índice i7 puede modificarse. Seleccione el índice i7 alternativo que va a utilizar en la lista desplegable Opciones para la columna requerida. Si se seleccionan índices i5 duplicados, las celdas se señalizarán en rojo para pedir al usuario que las corrija.
- 8. Una vez completadas todas las acciones anteriores, haga clic en la pestaña 1.2 SampleSheet y revise. Se utilizará texto en rojo para señalar los lugares donde todavía se necesita información. Si no hay texto en rojo, la pestaña SampleSheet puede guardarse como un archivo CSV (delimitado por comas) (*.csv). Guarde el archivo como "SampleSheet.csv". Al guardar en formato CSV, solamente se guardará la pestaña activa. Abra el archivo SampleSheet.csv guardado en Excel y elimine las filas vacías de la tabla [Datos], es decir, las filas entre 22 y 117 que no contengan información sobre la muestra. Cuando haya terminado, guarde el archivo. La hoja de muestras estará lista y podrá importarse para la secuenciación en un secuenciador de Illumina.

2.2 Preparación de la librería

1. Reúna los reactivos necesarios (volumen especificado en la tabla siguiente) y prepare según la tabla:

Reactivo	Condiciones de almacenamiento	Volumen por muestra (μL)	Preparación necesaria
Tampón de tagmentación	-15 °C a -25 °C CAJA 1	10	Póngalo a temperatura ambiente.
Agua estéril	15 °C a 30 °C. Suministrada por el usuario	30	No necesita preparación.
Beads de tagmentación	-15 °C a -25 °C CAJA 1	10	Póngalos a temperatura ambiente al menos 30 minutos.
Tampón de parada	15 °C a 30 °C CAJA 2	10	No necesita preparación.
Tampón de lavado de tagmentación	15 °C a 30 °C CAJA 2	300	No necesita preparación.
PCR Mix (o PCR Mix-1 si se utilizan kits de 96 muestras)	-15 °C a -25 °C CAJA 4 (o Caja 1 para PCR Mix-1)	20	Descongele y manténgalos en hielo. Tras el uso, devuélvalos a almacenamiento para pasos posteriores.
Índices: ASTX17.1(24)-IVD: H503, H505, H506, H517, H705, H706, H707, H710, H711, H714 ASTX17.1(24)-B-IVD: H502, H507, H508, H521, H701, H702, H703, H704, H712, H715 ASTX17.1(96)-A-IVD/ASTX9.1(96)-A-IVD: H503, H505, H506, H517, H502, H507, H508, H521, H705, H706, H707, H710, H711, H714, H701, H702, H703, H704, H712, H715 ASTX17.1(96)-B-IVD/ASTX9.1(96)-B-IVD: H510, H511, H513, H522, H515, H516, H518, H520, H716, H718, H719, H720, H721, H722, H723, H724, H726, H727, H728, H729	-15 °C a -25 °C CAJA 3	10 total	Descongele y manténgalos en hielo.

- 2. Agite y realice un pulso de centrífuga de todos los reactivos antes de usarlos.
- 3. Reúna la placa con esquina cortada de 96 pocillos necesaria, el Microseal B y los tubos de microcentrifugación de 1,5 ml o tubos de 5 ml.

NOTA: No hay un punto de parada seguro hasta la PCR de indexación. El proceso dura aproximadamente **1:50** horas (incluidos 50 minutos de termociclaje de PCR).

- 4. Para cada muestra de ADN, introduzca alícuotas de 10 μl de muestra de 10-100 ng/μl en el pocillo adecuado de una placa de PCR según el diseño de la placa en la hoja 1.0 Sample Prep.
- Prepare 40 μ L de mezcla maestra de tagmentación por muestra usando; 10 μ L de tampón de tagmentación, 20 μ L de agua estéril y 10 μ L de beads de tagmentación.
- 6. Mezcle la mezcla maestra anterior con un agitador vortex y, a continuación, realice un pulso de centrífuga.

- 7. Pipetee 40 µl de la mezcla maestra de tagmentación en cada pocillo que contenga una muestra de ADN.
- 8. Selle la placa con film Microseal B.
- 9. Haga un pulso de centrífuga de la placa a 100 x g durante 10 segundos para recoger todos los reactivos del fondo del pocillo.
- 10. Utilice el agitador de placas para mezclar a 1800 r/min durante 1 minuto.
- 11. Inspeccione visualmente la placa:
 - a) Si los beads no están distribuidos uniformemente en el pocillo, repita el agitado según el paso 10,
 - b) Si el material no está en el fondo del pozo o ha salpicado en el film Microseal B, realice un pulso de centrífuga y repita el paso de agitado 10.
- 12. Coloque la placa en el termociclador y ejecute el programa de Tagmentación con la tapa calentada a 105 °C, y el volumen de reacción 50 μL:

Temperatura	Tiempo
55°C	5 minutos
10°C	2 minutos

- 13. Una vez finalizado el programa, retire inmediatamente la placa del termociclador y déjela a temperatura ambiente durante 2 minutos.
- 14. Retire el film Microseal B.
- 15. Añada 10 µl de Stop Buffer a cada pocillo de reacción.
- 16. Vuelva a sellar la placa con film Microseal B.
- 17. Utilice el agitador de placas para mezclar a 1800 r/min durante 1 minuto.
- 18. Incube la placa durante 5 minutos adicionales a temperatura ambiente.
- 19. Durante la incubación, retire el PCR Mix (o PCR Mix-1, si está utilizando kits de 96 muestras) y los índices del congelador para descongelarlos y, a continuación, colóquelos sobre hielo/gradilla fría.
- 20. Inspeccione visualmente la placa. Si el material no está en la parte inferior del pocillo o se ha salpicado sobre el film Microseal B, gire y agite la placa.
- 21. Lave tres veces con tampón de lavado de tagmentación como se describe a continuación:
 - a) Retire el Microseal B y coloque la placa en el soporte magnético-96 durante 30 segundos, permitiendo que los beads se acumulen en los pocillos junto al imán.
 - b) Con una pipeta, aspire y deseche el sobrenadante, dejando los beads en los pocillos junto al imán,
 - c) Añada lentamente 100 µl de tampón de lavado de la tagmentación a cada pocillo,
 - d) Vuelva a sellar la placa con nuevo film Microseal B; asegúrese de que el film está correctamente fijado,
 - e) Utilice el agitador de placas para mezclar a 1800 r/min durante 2 minutos a temperatura ambiente,
 - f) **PRECAUCIÓN:** Si las muestras han salpicado en el sello, centrifugar a 100 x g durante 10 segundos antes de retirar el sello,
 - g) Repita los pasos a) a f) dos veces más para un total de 3 lavados.

NOTA: Antes de desechar el sobrenadante del tercer lavado, prepare la mezcla maestra de PCR como se describe a continuación.

22. Prepare una mezcla maestra de PCR de 40 μ L usando 20 μ L de agua estéril y una mezcla de PCR de 20 μ L. (o Mezcla-1 de PCR si se utilizan kits de 96 muestras).

NOTA: La mezcla de PCR se utiliza para posteriores pasos del protocolo. No deseche este tubo.

- 23. Retire el Microseal B y coloque la placa en el soporte magnético-96 durante 30 segundos, permitiendo que los beads se acumulen en los pocillos junto al imán.
- 24. Con una pipeta ajustada a 100 μl, aspire y deseche el sobrenadante del lavado de tagmentación final.
- 25. Retire la placa del soporte magnético.
- 26. Añada 40 µl de la mezcla maestra de PCR a cada pocillo.
- 27. Selle la placa con film Microseal B.
- 28. Utilice el agitador de placas para mezclar a 1800 r/min durante 2 minutos a temperatura ambiente.

29. Haga un pulso de centrífuga de la placa a 100 x g durante 10 segundos para asegurarse de que todos los beads estén suspendidos dentro de la mezcla maestra de PCR.

Para tubos de indexación (T),

- 30. (T) Agite y haga un pulso por centrífuga de los tubos de indexación para garantizar que todo el volumen se encuentre en la parte inferior del tubo.
- 31. (T) Retire el film Microseal B de la placa de muestras.
- 32. (Τ) Añada 5 μl del índice i7 a cada pocillo, de acuerdo con el diseño de la placa en la hoja 1.0 Sample_Prep.
- 33. (T) Añada 5 μl del índice i5 a cada pocillo, de acuerdo con el diseño de la placa en la hoja 1.0 Sample_Prep. Vaya al paso 34.

Para placa de indexación (P),

- 30. (P) Utilice el agitador de placas para mezclar la placa de indexación a 1800 r/min durante 1 minuto.
- 31. (P) Centrifugue la placa de indexación a 100 x g durante 10 segundos para recoger todos los reactivos del fondo del pocillo.
- 32. (P) Retire el film Microseal B de la placa de muestras.
- 33. (P) Confirme que la orientación de la placa y el conjunto de índices sean correctos. **No despegue el sello de film.** Perfore el sello de film de la placa de indexación con una punta. Con una punta nueva, transfiera 10 μl de los índices combinados de la placa de indexación a cada pocillo de muestra, según la disposición de la placa en la hoja 1.0 Sample_Prep.

Vaya al paso 34.

- 34. Vuelva a sellar con film Microseal B nuevo.
- 35. Utilice el agitador de placas para mezclar a 1800 r/min durante 1 minuto a temperatura ambiente.
- 36. Haga un pulso de centrífuga de la placa a 100 x g durante 10 segundos para recoger todos los reactivos del fondo del pocillo. Realice una inspección visual para asegurarse de que los beads siguen distribuyéndose uniformemente en la solución. Si los beads no están distribuidos uniformemente, repita el agitado según el paso 35.
- 37. Coloque la placa en el termociclador y ejecute el programa de PCR de indexación con la tapa calentada a 105 °C y un volumen de reacción de 50 μl:

N.º	Paso	Temperatura	Tiempo	Número de ciclos
1	Gap fill	72°C 3 minutos		1
2	Desnaturalización			1
	inicial	98°C	3 minutos	1
3	Desnaturalización	98°C	20 segundos	
4	Annealing	60°C	30 segundos	9
5	Extensión	72°C	3 minutos	
6	Extensión final	72°C	3 minutos	1
7	Retención final	10°C	Retención	1

NOTA: Punto de parada seguro. Las librerías pueden almacenarse entre -15 °C y -25 °C durante un máximo de 1 semana.

NOTA: Si procede inmediatamente a la selección del tamaño y la purificación, asegúrese de que los beads de purificación se pongan a temperatura ambiente antes de su uso.

2.3 Selección de tamaño y purificación

1. Para obtener un rendimiento y una selección de tamaño óptimos, el volumen de la muestra, los beads y el sobrenadante varían en función del tamaño de la ejecución. En la tabla siguiente se muestran los volúmenes analizados para el intervalo de muestras especificado por ejecución.

Volúmenes de reactivo para cálculos	6-24 Muestras/Pool	25-48 Muestras/Pool	49-96 Muestras/Pool
N.º de muestras que se van a agrupar (máx. mostrado para intervalos)	24	48	96
Volumen de la librería que se va a agrupar por muestra (μl)	10	5	2.5
Volumen de beads diluidos por muestra (μl)	50	25	12.5
Volumen de transferencia de sobrenadante por muestra (μl)	55	27.5	13.75
Volumen de beads limpios por muestra, paso 8 (μl)	4.4	2.2	1.1

2. Reúna los reactivos necesarios (volumen especificado en la tabla siguiente) y prepare según la tabla:

Reactivo	Condiciones de almacenamiento	Volumen por muestra (μL)	Preparación necesaria
Beads de purificación (Beads de purificación-1 para kits de 96 muestras)	2°C a 8°C CAJA 5	24.7	Póngalos a temperatura ambiente al menos 30 minutos. Tras el uso, devuélvalos a almacenamiento para pasos posteriores.
Agua estéril	15 °C a 30 °C. Suministrada por el usuario	Variado	No necesita preparación.
Etanol al 100 %	15 °C a 30 °C. Suministrada por el usuario	1920	Prepare etanol al 80 % como se describe a continuación.
Tampón de resuspensión	2°C a 8°C. CAJA 5	Variado	Póngalo a temperatura ambiente. Tras el uso, devuélvalos a almacenamiento para pasos posteriores.

- 3. Prepare beads de purificación diluidos con beads de purificación y agua estéril utilizando los volúmenes calculados según *IFU095-5_AlloSeq Tx Early Pooling Workbook CE IVD*. Asegúrese de la correcta agitación de los beads de purificación antes del uso.
- 4. Prepare 2400 μ L de etanol al 80 % fresco por pool, suficiente para 2 lavados, utilizando 1920 μ L de etanol al 100 % y 480 μ L de agua estéril.

NOTA: El número de pools por experimento está preestablecido en 1 en la celda amarilla del paso 3 del cuaderno de trabajo. Puede anularse manualmente en caso de ser necesario. La modificación de esta celda actualizará el número de pools para posteriores pasos de este protocolo/cuaderno de trabajo. Si se va a realizar más de un pool en este experimento con el mismo número de muestras por pool, el volumen de beads de purificación debe aumentarse en consecuencia (es decir, duplicarse para dos pools), y deben seguirse las instrucciones siguientes en su totalidad para cada pool.

Si se necesitan varios pools con diferente número de muestras, esta pestaña del cuaderno de trabajo debe duplicarse y las celdas en amarillo deben actualizarse para reflejar el número de muestras, de modo que los volúmenes de reactivo necesarios/transferidos se ajusten correctamente. Para duplicar la pestaña, haga clic con el botón derecho en cualquiera de las pestañas y seleccione "Mover o copiar", seleccione "3.0 SS_Purificación" de la lista, marque la casilla "Crear copia" y haga clic en "Aceptar".

- 5. Agite y realice un pulso de centrífuga de todos los reactivos antes de usarlos.
- 6. Reúna tubos de 1,5 ml (**Opcional:** si así lo prefiere, se pueden usar tubos de 2 ml, con incremento del volumen de lavado de etanol de 1200 μl a 1500 μl en el paso 20a más adelante).

NOTA: El proceso tarda aproximadamente **1** hora.

- 7. Distribuya el volumen adecuado (ver la tabla de cálculos anterior o el cuaderno de trabajo) de Purification Beads diluidas en el tubo de 1,5 ml.
- 8. Pipetee la meza de Tagmentation beads y el sobrenadante del PCR de indexación **o bien** agite la placa del PCR de indexación durante 1 minuto a 1800 r/min y, a continuación, añada el volumen adecuado de cada mezcla (ver la tabla de cálculos anterior o el cuaderno de trabajo) al tubo que contiene Purification Beads diluidos.
- 9. Agite cada uno de los tubos a alta velocidad durante 10 segundos hasta que la muestra tenga un aspecto visualmente homogéneo.
- 10. Incube a temperatura ambiente durante 5 minutos. Durante esta incubación los fragmentos más grandes se unen a los beads.
- 11. Haga un pulso de centrífuga rápido del tubo.
- 12. Coloque el tubo en un imán durante 2,5 minutos, permitiendo que los beads se acumulen junto al imán. Si el sobrenadante se mantiene turbio, déjelo en el imán hasta que se aclare.
- 13. <u>Transfiera</u> el volumen apropiado (ver la tabla de cálculos anterior o el cuaderno de trabajo) del sobrenadante al nuevo tubo.
- 14. Añada el volumen adecuado (ver la tabla de cálculos anterior o el cuaderno de trabajo) de Purification Beads (sin diluir) al tubo que contiene el sobrenadante.
- 15. Agite cada tubo a alta velocidad durante 10 segundos.
- 16. Incube a temperatura ambiente durante 5 minutos. Durante esta incubación, los fragmentos de tamaño objetivo se unen a los beads.
- 17. Haga un pulso de centrífuga rápido del tubo.
- 18. Coloque el tubo en un imán durante 2,5 minutos, permitiendo que los beads se acumulen junto al imán. Si el sobrenadante se mantiene turbio, déjelo en el imán hasta que se aclare.
- 19. Con una pipeta, aspire y deseche el sobrenadante, dejando los beads en el tubo junto al imán.
- 20. Manteniendo el tubo en el imán, lave dos veces con etanol al 80 %:
 - a) Añada 1200 µl de etanol al 80 % a cada tubo,
 - b) Incube a temperatura ambiente durante 30 segundos,
 - c) Con una pipeta, aspire y deseche todo el sobrenadante,
 - d) Repita los pasos a) a c) para un total de 2 lavados.
- 21. Retire todo el sobrenadante restante con la pipeta P20.
- 22. Seque el tubo al aire durante 5 minutos a temperatura ambiente, para permitir que el etanol residual se evapore.
- 23. Saque el tubo del imán y añada 37 μl de Resuspension Buffer a cada tubo para eluir los fragmentos objetivo.
- 24. Agite cada tubo a alta velocidad durante 10 segundos.
- 25. Incube a temperatura ambiente durante 5 minutos.
- 26. Haga un pulso de centrífuga rápido del tubo.
- 27. Coloque el tubo sobre un imán durante 30 segundos, permitiendo que los beads se acumulen junto al imán.
- 28. Transfiera 35 μl de sobrenadante a un nuevo tubo de 1,5 ml para su almacenamiento. Este pool puede continuar hasta la hibridación.

NOTA: Punto de parada seguro. Las librerías pueden almacenarse entre -15 °C y -25 °C durante un máximo de 1 mes.

2.4 Cuantificación Qubit (opcional)

1. Reúna los reactivos necesarios (volumen especificado en la tabla siguiente) y prepare según la tabla:

Reactivo	Condiciones de almacenamiento	Volumen por pool (μL)	Preparación necesaria
Tampón Qubit BR	-25 °C a 30 °C Suministrado por el usuario	199	No necesita preparación.
Tinte Qubit BR	-25 °C a 30 °C Suministrado por el usuario	1	No necesita preparación.
Estándar BR n.º 1	2 °C a 8 °C Suministrado por el usuario	10	Póngalo a temperatura ambiente.
Estándar BR n.º 2	2 °C a 8 °C Suministrado por el usuario	10	Póngalo a temperatura ambiente.

- 2. Reúna los tubos Qubit necesarios y el tubo de 1,5 ml o 5 ml para la preparación de la solución de trabajo, según el volumen necesario.
- 3. Prepare dos tubos de ensayo para los estándares y uno para cada pool.
- 4. Prepare la solución de trabajo de 200 μL Qubit con 199 μL de tampón Qubit y 1 μL de tinte Qubit por muestra/estándar que se va a cuantificar.
- 5. Agite la solución de trabajo durante 2-3 segundos y luego haga un pulso de centrífuga.
- 6. Distribuya proporcionalmente 190 μl de solución de trabajo en cada uno de los tubos estándar.
- 7. Distribuya proporcionalmente 198 μl de solución de trabajo en cada uno de los tubos estándar.
- 8. Distribuya proporcionalmente 10 µl de solución estándar en cada uno de los tubos estándar respectivos.
- 9. Distribuya proporcionalmente $2 \mu l$ de cada pool en el tubo respectivo.
- 10. Agite todos los tubos durante 2-3 segundos y luego haga un pulso de centrífuga.
- 11. Incube la placa durante 2 minutos a temperatura ambiente.
- 12. Inserte los tubos en el fluorímetro Qubit y tome las lecturas (consulte el protocolo del fabricante del Qubit para obtener más información).
- 13. Registre las lecturas de Qubit en la tabla del cuaderno de trabajo para calcular el promedio por pool.

NOTA: El rendimiento esperado de la librería es de aproximadamente 30-100 ng/ μ L, pero puede variar dependiendo de la calidad y la aportación del ADN. Se espera que un rendimiento de 10 ng/ μ l o más proporcione resultados satisfactorios de enriquecimiento.

2.5 Visualización en TapeStation (opcional)

NOTA: Después de la validación del usuario, se pueden utilizar sistemas alternativos para la visualización de fragmentos, como Fragment Analyzer, Bioanalyzer o similares.

1. Reúna los reactivos necesarios (volumen especificado en la tabla siguiente) y prepare según la tabla:

Reactivo	Condiciones de almacenamiento	Volumen por muestra (μL)	Preparación necesaria
Ladder D1000	2 °C a 8 °C Suministrado por el usuario	1	Póngalo a temperatura ambiente.
Tampón de muestra D1000	2 °C a 8 °C Suministrado por el usuario	3	Póngalo a temperatura ambiente.

- 2. Reúna la ScreenTape D1000 necesaria, así como las tiras y las tapas de los tubos ópticos TapeStation.
- 3. Transfiera 1 µl de cada librería enriquecida previamente a un nuevo tubo.
- 4. Añada 1 μl de Ladder D1000 a un tubo de referencia.
- 5. Añada 3 µl de tampón de muestra D1000 a cada tubo de librería preenriquecida y tubo de referencia.

- 6. Selle todos los tubos con las tapas.
- 7. Agite todos los tubos a fondo usando un vórtice IKA a 2000 rpm durante 1 minuto.
- 8. Haga un breve pulso de centrífuga para asegurarse de que todas las muestras estén en el fondo de los tubos.
- 9. Quite las tapas y cargue los tubos de muestra en el instrumento TapeStation 2200.
- 10. Seleccione los tubos necesarios en el software del controlador TapeStation 2200 y analice las muestras (consulte el manual de usuario de TapeStation para obtener más información).
- 11. Una vez finalizada la carrera, inicie TapeStation Analysis Software para ver los resultados (consulte el manual de usuario de TapeStation para obtener más información).
- 12. Registre los resultados en el cuaderno de trabajo.

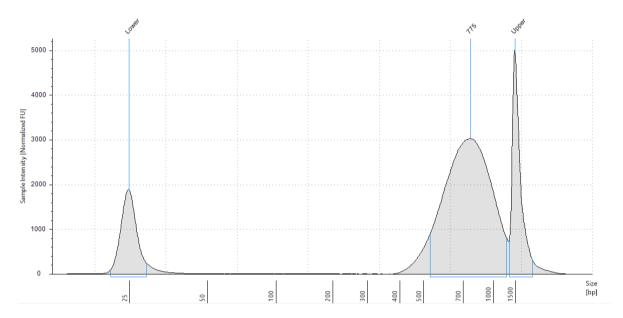


Figura 2.5.1: Imagen representativa de la traza de TapeStation para librerías.

3. Captura híbrida (flujo de trabajo Early Pooling)

3.0 Introducción al protocolo

- Siga el protocolo AlloSeq Tx a continuación en el orden que se muestra y utilizando los parámetros especificados.
- Antes de continuar, confirme el contenido del kit y asegúrese de que dispone de los insumos y el equipo necesarios.
- Para facilitar su uso, los pasos del protocolo para la captura híbrida también se detallan en IFU095-5_AlloSeq Tx Early Pooling Workbook CE IVD. Las referencias al cuaderno de trabajo del Capítulo 3 pertenecen a este cuaderno.

3.1 Hibridación de sondas

1. Reúna los reactivos necesarios (volumen especificado en la tabla siguiente) y prepare según la tabla:

Reactivo	Condiciones de almacenamiento	Volumen por pool (μL)	Preparación necesaria
Panel de sondas AlloSeq Tx	-15 °C a -25 °C CAJA 4	10	Póngalo a temperatura ambiente.
Tampón de hibridación 1	-15 °C a -25 °C CAJA 4	50	Coloque en Hybex a 58 °C durante 15 minutos. Agite e inspeccione visualmente. Si el precipitado permanece, incube a 58 °C durante otros 15 minutos.
Tampón de hibridación 2	2°C a 8°C CAJA 5	10	Póngalo a temperatura ambiente.

- 2. Agite y realice un pulso de centrífuga de todos los reactivos antes de usarlos.
- 3. Reúna los tubos/tiras y tapas de PCR.

NOTA: No hay un punto de parada seguro hasta después del protocolo de captura. Los pools de muestras deben proceder directamente del paso de retención de 62 °C de la reacción de termociclaje de hibridación hasta la captura de beads y los pasos de lavado calentados.

NOTA: El proceso tarda aproximadamente 20 minutos en configurarse y un mínimo de 1,5 horas y un máximo de 18 horas en termociclador (las reacciones que se dejan durante la noche o hasta 18 horas deben mantenerse a una temperatura de 62 °C en el paso de retención final de la reacción).

4. Para cada reacción de hibridación, combine los siguientes reactivos en el orden indicado a continuación en un tubo/tira de PCR:

Reactivo	Volumen por pool (μL)
Pool de librerías de	30
muestras	30
Panel de sondas AlloSeq Tx	10
Tampón de hibridación 1	50
Tampón de hibridación 2	10
Total	100

- 5. Con una pipeta ajustada a 70 μl, mezcle cada pocillo de reacción de hibridación 10 veces, coloque la tapa y realice un pulso de centrífuga.
- 6. Si la solución permanece turbia, mezcle 6-8 veces más, coloque la tapa y realice un pulso de centrífuga
- 7. Coloque el tubo/tira en el termociclador y ejecute el programa de hibridación con la tapa calentada a 100 °C, y un volumen de reacción de 100 μ l:

N.º	Paso	Temperatura	Tiempo	N.º de ciclos
1	Desnaturalización	98°C	5 minutos	1
2	Ramp Down	98 °C - 62 °C, disminuyendo 2 °C/ciclo	1 minuto	1
3	Vaya al paso 2 para 18 ciclos más (total de 19 ciclos), disminuyendo 2 °C/ciclo.			
4	Hibridación	62°C	60 minutos	1
5	Retención final	62°C	Retención (no supere 18 horas a 62 °C, incluido el paso n.º 4)	1

8. Deje el tubo/tira en el termociclador hasta que esté listo para proceder con la captura. Asegúrese de que los beads de captura han alcanzado la temperatura ambiente y que el tampón de lavado de captura y el Hybex se calientan a 58 °C.

3.2 Captura

1. Reúna los reactivos necesarios (volumen especificado en la tabla siguiente) y prepare según la tabla:

Reactivo	Condiciones de almacenamiento	Volumen por pool (μL)	Preparación necesaria
Capture Beads	2°C a 8°C CAJA 5	250	Póngalos a temperatura ambiente al menos 30 minutos.
Tampón de lavado de captura	-15 °C a -25 °C CAJA 4	800	Precaliente hasta 58 °C antes de usarlo.
Tampón de elución de captura 1	-15 °C a -25 °C CAJA 4	28.5	Póngalo a temperatura ambiente.
2N NaOH	-15 °C a -25 °C CAJA 4	1.5	Póngalo a temperatura ambiente. Tras el uso, devuélvalos a almacenamiento para pasos posteriores.
Tampón de elución de captura 2	2 °C a 8 °C CAJA 5	4	Póngalo a temperatura ambiente.

2. Prepare una mezcla maestra de elución de los siguientes reactivos por pool que se va a capturar:

Reactivo	Volumen por pool (μL)
Tampón de elución de	
captura 1	28.5
2N NaOH (fresco)	1.5

NOTA: La solución de NaOH absorberá fácilmente CO₂ de la atmósfera, alterando el pH y el rendimiento del reactivo. Asegúrese de que el tubo de NaOH 2N está sellado cuando no se esté utilizando.

- 3. Agite y realice un pulso de centrífuga de todos los reactivos antes de usarlos.
- 4. Reúna los tubos de micropulso de 1,5 ml, los tubos/tiras y tapas de PCR necesarios.

NOTA: Este proceso tarda aproximadamente **1** hora.

- 5. Para cada reacción de hibridación, añada 250 µl de beads de captura a un tubo de 1,5 ml nuevo.
- 6. Transfiera 100 µl de cada reacción de hibridación al tubo correspondiente que contenga Capture Beads.
- 7. Agite el tubo a alta velocidad durante 10 segundos. No centrifugue ni haga un pulso de centrífuga.
- 8. Incube el tubo a 58 °C en Hybex durante 15 minutos.
- 9. Haga un pulso de centrífuga rápido del tubo.

- 10. Coloque inmediatamente el tubo sobre un imán durante 30 segundos, permitiendo que los beads se acumulen junto al imán.
- 11. Con una pipeta, aspire y deseche el sobrenadante, dejando los beads en el tubo junto al imán.
- 12. Lave tres veces con tampón de lavado de captura calentado como se describe a continuación:

NOTA: Cuando no lo esté usando, mantenga el tampón de lavado de captura en el Hybex para mantener una temperatura de 58 °C. Retírelo solo inmediatamente antes del Hybex antes de añadirlo a la reacción en los pasos 12b y 14. Trabaje rápidamente al realizar los pasos de lavado con calor para minimizar el tiempo que el pool de muestras/tampón está a temperatura ambiente.

- a) Retire el tubo del imán,
- b) Añada 200 µl de tampón de lavado de captura calentado (58 °C),
- c) Agite el tubo a alta velocidad durante 10 segundos. No centrifugue ni haga un pulso de centrífuga.
- d) Incube el tubo a 58 °C en Hybex durante 5 minutos.
- e) Realice un pulso de centrífuga y coloque inmediatamente el tubo en un imán durante 30 segundos, permitiendo que los beads se acumulen junto al imán.
- f) Con una pipeta, aspire y deseche el sobrenadante, dejando los beads en el tubo junto al imán.
- g) Repita los pasos a) a f) dos veces más para un total de 3 lavados.
- 13. Retire el tubo del imán.
- 14. Añada 200 μl de tampón de lavado de captura calentado (58 °C).
- 15. Agite el tubo a alta velocidad durante 10 segundos. No centrifugue ni haga un pulso de centrífuga.
- 16. Transfiera todo el contenido (solución de lavado y beads) a un nuevo tubo de 1,5 ml.

NOTA: Este paso de transferencia es fundamental para eliminar los inhibidores de PCR que pueden afectar al rendimiento posterior.

- 17. Incube el tubo a 58 °C en Hybex durante 5 minutos.
- 18. Realice inmediatamente un pulso de centrífuga y, a continuación, coloque el tubo en un imán en un imán durante 30 segundos, permitiendo que los beads se acumulen junto al imán.
- 19. Con una pipeta, aspire y deseche el sobrenadante, dejando los beads en el tubo junto al imán.
- 20. Realice un pulso de centrífuga rápidamente y coloque inmediatamente el tubo en un imán durante 30 segundos, permitiendo que los beads se acumulen junto al imán.
- 21. Con una pipeta P20, aspire y deseche el sobrenadante, dejando los beads en el tubo junto al imán.
- 22. Agite la mezcla maestra de elución preparada anteriormente, y luego saque el tubo de reacción del imán y añada 23 μl de mezcla maestra de elución a cada tubo.
- 23. Agite el tubo a alta velocidad durante 10 segundos.
- 24. Incube a temperatura ambiente durante 2 minutos.
- 25. Haga un pulso de centrífuga rápido del tubo.
- 26. Coloque el tubo en un imán durante 30 segundos, permitiendo que los beads se acumulen junto al imán.
- 27. <u>Transfiera</u> 21 μl de sobrenadante a un nuevo tubo/tira de PCR.
- 28. Añada 4 μl de tampón de lavado de captura 2.
- 29. Mezcla de pipeta 6-8 veces. El volumen final es de 25 μ l.

NOTA: Punto de parada seguro. Las librerías pueden almacenarse entre -15 °C y -25 °C durante un máximo de 24 horas.

3.3 PCR posterior al enriquecimiento

1. Reúna los reactivos necesarios (volumen especificado en la tabla siguiente) y prepare según la tabla:

Reactivo	Condiciones de almacenamiento	Volumen por pool (μL)	Preparación necesaria
Cebadores de PCR	-15 °C a -25 °C CAJA 4	5	Descongele en hielo.
Mezcla de PCR (o Mezcla-2 de PCR si se utilizan kits de 96 muestras)	-15 °C a -25 °C CAJA 4	20	Descongele a temperatura ambiente y luego ponga en hielo.

- 2. Agite y realice un pulso de centrífuga de todos los reactivos antes de usarlos.
- 3. Reúna los tubos de PCR necesarios que contengan librerías de captura del paso 3.2.

NOTA: Este proceso tarda aproximadamente 5 minutos en establecerse, 1:40 horas en termociclador.

- 4. Añada 5 μl de cebadores de PCR a las librerías capturadas en el tubo de PCR.
- 5. Añada 20 μl de PCR Mix (o PCR Mix-2 si está utilizando kits de 96 muestras) al tubo.
- 6. Mezcle en pipeta 10 veces.
- 7. Haga un pulso de centrífuga rápido del tubo.
- 8. Coloque el tubo/tira en el termociclador y ejecute el programa de PCR posterior al enriquecimiento con la tapa calentada a 105 °C, y un volumen de reacción de 50 μL:

N.º	Paso	Temperatura	Tiempo	Número de ciclos
1	Desnaturalización	98°C	30 segundos	1
2	Desnaturalización	98°C	1 minuto	
3	Annealing	60°C	30 segundos	17
4	Extensión	72°C	3 minutos	
5	Extensión final	72°C	5 minutos	1
6	Retención final	10°C	Retención	1

NOTA: Punto de parada seguro. Las librerías pueden almacenarse entre -15 °C y -25 °C durante un máximo de 1 semana

NOTA: Si procede inmediatamente a la purificación, asegúrese de que los beads de purificación se pongan a temperatura ambiente antes de su uso.

3.4 Purificación de PCR posterior al enriquecimiento

1. Reúna los reactivos necesarios (volumen especificado en la tabla siguiente) y prepare según la tabla:

Reactivo	Condiciones de almacenamiento	Volumen por pool (μL)	Preparación necesaria
Purification Beads (Purification Beads-2 para kits de 96 muestras)	2°C a 8°C CAJA 5	27	Póngalos a temperatura ambiente al menos 30 minutos.
Agua estéril	15°C a 30°C Suministrado por el usuario	80	No necesita preparación.
Etanol al 100 %	15 °C a 30 °C Suministrado por el usuario	320	Prepare etanol al 80 % como se describe a continuación.

Reactivo	Condiciones de almacenamiento	Volumen por pool (μL)	Preparación necesaria
Tampón de resuspensión	2°C a 8°C CAJA 5	32	Póngalo a temperatura ambiente. Tras el uso, devuélvalos a almacenamiento para pasos posteriores.

- 2. Prepare etanol fresco al 80 % (2 lavados por pool) utilizando 480 μl de etanol al 100 % y 120 μl de agua estéril (se incluye un volumen en exceso).
- 3. Agite y realice un pulso de centrífuga de todos los reactivos antes de usarlos.
- 4. Reúna los tubos de microcentrifugación de 1,5 ml necesarios.

NOTA: El proceso tarda aproximadamente 30 minutos.

- 5. Para cada reacción de purificación, añada 27 μl de beads de purificación agitados a un tubo de 1,5 ml nuevo.
- 6. <u>Transfiera</u> 45 μl de cada reacción de PCR posterior al enriquecimiento al tubo correspondiente que contenga beads de purificación.
- 7. Agite cada tubo a alta velocidad durante 10 segundos.
- 8. Haga un pulso de centrífuga rápido del tubo.
- 9. Incube a temperatura ambiente durante 5 minutos.
- 10. Coloque el tubo en un imán durante 30 segundos, permitiendo que los beads se acumulen junto al imán.
- 11. Con una pipeta, aspire y deseche el sobrenadante, dejando los beads en el tubo junto al imán.
- 12. Manteniendo el tubo en el imán, lave dos veces con etanol al 80 %:
 - a) Añada 200 µl de etanol al 80 % a cada tubo,
 - b) Incube a temperatura ambiente durante 30 segundos,
 - c) Con una pipeta, aspire y deseche todo el sobrenadante,
 - d) Repita los pasos a) a c) para un total de 2 lavados.
- 13. Retire todo el sobrenadante restante con la pipeta P20.
- 14. Seque el tubo al aire durante 5 minutos a temperatura ambiente, para permitir que el etanol residual se evapore.
- 15. Saque el tubo del imán y añada 32 μl de tampón de resuspensión a cada tubo para eluir los fragmentos objetivo.
- 16. Agite cada tubo a alta velocidad durante 10 segundos.
- 17. Incube a temperatura ambiente durante 5 minutos.
- 18. Haga un pulso de centrífuga rápido del tubo.
- 19. Coloque el tubo sobre un imán durante 30 segundos, permitiendo que los beads se acumulen junto al imán.
- 20. <u>Transfiera</u> 30 µl de sobrenadante a un nuevo tubo de 1,5 ml para su almacenamiento.

NOTA: Punto de parada seguro. Las librerías pueden almacenarse entre -15 °C y -25 °C durante un máximo de 1 mes.

3.5 Cuantificación Qubit

1. Reúna los reactivos necesarios (volumen especificado en la tabla siguiente) y prepare según la tabla:

Reactivo	Condiciones de almacenamiento	Volumen por pool (μL)	Preparación necesaria
Tampón Qubit BR	-25 °C a 30 °C Suministrado por el usuario	199	No necesita preparación.
Tinte Qubit BR	-25 °C a 30 °C Suministrado por el usuario	1	No necesita preparación.
Estándar BR n.º 1	2 °C a 8 °C Suministrado por el usuario	10	Póngalo a temperatura ambiente.
Estándar BR n.º 2	2 °C a 8 °C Suministrado por el usuario	10	Póngalo a temperatura ambiente.

- 2. Reúna los tubos Qubit necesarios y el tubo de 1,5 ml o 5 ml para la preparación de la solución de trabajo, según el volumen necesario.
- 3. Prepare dos tubos de ensayo para los estándares y uno para cada pool.
- 4. Prepare la solución de trabajo de 200 μL Qubit con 199 μL de tampón Qubit y 1 μL de tinte Qubit por muestra/estándar que se va a cuantificar.
- 5. Agite la solución de trabajo durante 2-3 segundos y luego haga un pulso de centrífuga.
- 6. Distribuya proporcionalmente 190 μl de solución de trabajo en cada uno de los tubos estándar.
- 7. Distribuya proporcionalmente 198 µl de solución de trabajo en cada uno de los tubos estándar.
- 8. Distribuya proporcionalmente **10** μl de solución estándar en cada uno de los tubos estándar respectivos.
- 9. Distribuya proporcionalmente $2 \mu l$ de cada pool en el tubo respectivo.
- 10. Agite todos los tubos durante 2-3 segundos y luego haga un pulso de centrífuga.
- 11. Incube la placa durante 2 minutos a temperatura ambiente.
- 12. Inserte los tubos en el fluorímetro Qubit y tome las lecturas (consulte el protocolo del fabricante del Qubit para obtener más información).
- 13. Registre las lecturas de Qubit en la tabla del cuaderno de trabajo para calcular el promedio de concentración.

3.6 Visualización en TapeStation (opcional)

NOTA: Después de la validación del usuario, se pueden utilizar sistemas alternativos para la visualización de fragmentos, como Fragment Analyzer, Bioanalyzer o similares.

1. Reúna los reactivos necesarios (volumen especificado en la tabla siguiente) y prepare según la tabla:

Reactivo	Condiciones de almacenamiento	Volumen por pool (μL)	Preparación necesaria
Ladder D1000	2 °C a 8 °C Suministrado por el usuario	1	Póngalo a temperatura ambiente.
Tampón de muestra D1000	2 °C a 8 °C Suministrado por el usuario	3	Póngalo a temperatura ambiente.

- 2. Reúna la ScreenTape D1000 necesaria, así como las tiras y las tapas de los tubos ópticos TapeStation.
- 3. Transfiera 1 µl de cada pool enriquecido a un nuevo tubo.
- 4. Añada 1 μl de Ladder D1000 a un tubo de referencia.
- 5. Añada 3 μl de tampón de muestra D1000 a cada tubo del pool y tubo de referencia.
- 6. Selle todos los tubos con las tapas.
- 7. Agite todos los tubos a fondo usando un vórtice IKA a 2000 rpm durante 1 minuto.
- 8. Haga un breve pulso de centrífuga para asegurarse de que todas las muestras estén en el fondo de los tubos.
- 9. Quite las tapas y cargue los tubos de muestra en el instrumento TapeStation 2200.

- 10. Seleccione los tubos necesarios en el software del controlador TapeStation 2200 y analice las muestras (consulte el manual de usuario de TapeStation para obtener más información).
- 11. Una vez finalizada la carrera, inicie TapeStation Analysis Software para ver los resultados (consulte el manual de usuario de TapeStation para obtener más información).
- 12. Registre los resultados en la tabla del cuaderno de trabajo.

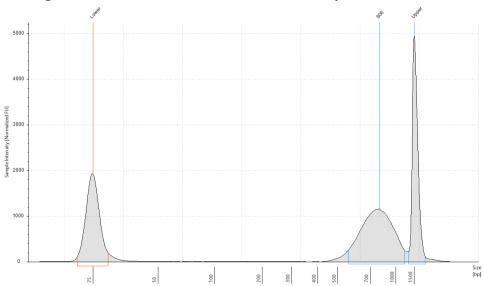


Figura 3.6.1: Imagen representativa de la traza de TapeStation para un pool de librerías enriquecidas.

Preparación de la librería (flujo de trabajo Original)

4.0 Introducción al protocolo

- Siga el protocolo AlloSeq Tx a continuación en el orden que se muestra y utilizando los parámetros especificados.
- Antes de continuar, confirme el contenido del kit y asegúrese de que dispone de los insumos y el equipo necesarios.
- Para facilitar su uso, los pasos del protocolo para la preparación de la librería también se detallan en IFU095-1_AlloSeq
 Tx Library Preparation Workbook CE IVD. Las referencias al cuaderno de trabajo del Capítulo 4 pertenecen a este
 cuaderno.

4.1 Preparación de la muestra

- 1. Introduzca el ID del experimento, la descripción, el operador y la fecha en el cuaderno de trabajo.
- 2. Seleccione el conjunto de sondas AlloSeq que se va a utilizar para el experimento en el menú desplegable del cuaderno de trabajo.
- 3. Seleccione el tipo de secuenciador que se va a utilizar en el menú desplegable del cuaderno.
- 4. Introduzca el ID de las muestras que se van a probar en la sección amarilla del diseño de placa del cuaderno de trabajo, según la configuración deseada.

NOTA: Solamente se pueden introducir caracteres alfanuméricos. Los ID de muestra duplicados se señalizarán en rojo para pedir al usuario que los corrija. Es un requisito del software del secuenciador tener solamente ID de muestra únicos en una carrera. No introduzca ninguna información para los pocillos que no estén destinados a contener ninguna muestra.

5. Seleccione el conjunto de índices deseado de la lista desplegable naranja bajo Diseño de la placa en el cuaderno de trabajo.

- 6. Si es necesario, y utilizando el formato de índice de tubos, el orden del índice i7 puede modificarse. Seleccione el índice i7 alternativo que va a utilizar en la lista desplegable de opciones para la columna requerida. Si se seleccionan índices i7 duplicados, las celdas se señalizarán en rojo para pedir al usuario que las corrija.
- 7. Si es necesario, y utilizando el formato de índice de tubos, el orden del índice i7 puede modificarse. Seleccione el índice i7 alternativo que va a utilizar en la lista desplegable Opciones para la columna requerida. Si se seleccionan índices i5 duplicados, las celdas se señalizarán en rojo para pedir al usuario que las corrija.
- 8. Una vez completadas todas las acciones anteriores, haga clic en la pestaña 1.2 SampleSheet y revise. Se utilizará texto en rojo para señalar los lugares donde todavía se necesita información. Si no hay texto en rojo, la pestaña SampleSheet puede guardarse como un archivo CSV (delimitado por comas) (*.csv). Guarde el archivo como 'SampleSheet.csv'. Al guardar en formato CSV, solamente se guardará la pestaña activa. Abra el archivo SampleSheet.csv guardado en Excel y elimine las filas vacías de la tabla [Datos], es decir, las filas entre 22 y 117 que no contengan información sobre la muestra. Cuando haya terminado, guarde el archivo. La hoja de muestras estará lista y podrá importarse para la secuenciación en un secuenciador de Illumina.

4.2 Preparación de la librería

1. Reúna los reactivos necesarios (volumen especificado en la tabla siguiente) y prepare según la tabla:

Reactivo	Condiciones de almacenamiento	Volumen por muestra (μL)	Preparación necesaria
Tampón de tagmentación	-15 °C a -25 °C CAJA 1	10	Póngalo a temperatura ambiente.
Agua estéril	15 °C a 30 °C. Suministrado por el usuario	30	No necesita preparación.
Beads de tagmentación	-15 °C a -25 °C CAJA 1	10	Póngalos a temperatura ambiente al menos 30 minutos.
Tampón de parada	15 °C a 30 °C CAJA 2	10	No necesita preparación.
Tampón de lavado de tagmentación	15 °C a 30 °C CAJA 2	300	No necesita preparación.
PCR Mix (o PCR Mix-1 si se utilizan kits de 96 muestras)	-15 °C a -25 °C CAJA 4 (o CAJA 1 si se utilizan 96 kits)	20	Descongele y manténgalos en hielo. Tras el uso, devuélvalos a almacenamiento para pasos posteriores.

Reactivo	Condiciones de	Volumen por	Preparación necesaria
	almacenamiento	muestra (μL)	
Índices:			
ASTX17.1(24)-IVD: H503, H505, H506, H517,			
H705, H706, H707, H710, H711, H714			
ASTX17.1(24)-B-IVD: H502, H507, H508, H521,			
H701, H702, H703, H704, H712, H715		10 total	Descongele y manténgalos en hielo.
ASTX17.1(96)-A-IVD/ASTX9.1(96)-A-IVD: H503,	15 °C - 25 °C		
H505, H506, H517, H502, H507, H508, H521,	-15 °C a -25 °C CAJA 3		
H705, H706, H707, H710, H711, H714, H701,			meio.
H702, H703, H704, H712, H715			
ASTX17.1(96)-B-IVD/ASTX9.1(96)-B-IVD: H510,			
H511, H513, H522, H515, H516, H518, H520,			
H716, H718, H719, H720, H721, H722, H723,			
H724, H726, H727, H728, H729			

- 2. Agite y realice un pulso de centrífuga de todos los reactivos antes de usarlos.
- 3. Reúna la placa con esquina cortada de 96 pocillos necesaria, el Microseal B y los tubos de microcentrifugación de 1,5 ml o tubos de 5 ml.

NOTA: No hay un punto de parada seguro hasta la PCR de indexación. El proceso dura aproximadamente **1:50** horas (incluidos 50 minutos de termociclaje de PCR).

- 4. Para cada muestra de ADN, introduzca alícuotas de 10 μl de muestra de 10-100 ng/μl en el pocillo adecuado de una placa de PCR según el diseño de la placa en la hoja 1.0 Sample Prep.
- 5. Prepare 40 μ l de mezcla maestra de tagmentación por muestra usando; 10 μ L de tampón de tagmentación, 20 μ L de agua estéril y 10 μ l de beads de tagmentación.
- 6. Mezcle la mezcla maestra anterior con un agitador vortex y, a continuación, realice un pulso de centrífuga.
- 7. Pipetee 40 µl de la mezcla maestra de tagmentación en cada pocillo que contenga una muestra de ADN.
- 8. Selle la placa con film Microseal B.
- 9. Haga un pulso de centrífuga de la placa a 100 x g durante 10 segundos para recoger todos los reactivos del fondo del pocillo.
- 10. Utilice el agitador de placas para mezclar a 1600 r/min durante 1 minuto.
- 11. Inspeccione visualmente la placa:
 - a) Si los beads no están distribuidos uniformemente en el pocillo, repita el agitado según el paso 10,
 - b) Si el material no está en el fondo del pozo o ha salpicado en el film Microseal B, realice un pulso de centrífuga y repita el paso de agitado 10.
- 12. Coloque la placa en el termociclador y ejecute el programa de Tagmentación con la tapa calentada a 105 °C, y el volumen de reacción 50 μL:

Temperatura	Tiempo
55°C	5 minutos
10°C	2 minutos

- 13. Una vez finalizado el programa, retire inmediatamente la placa del termociclador y déjela a temperatura ambiente durante 2 minutos.
- 14. Retire el film Microseal B.
- 15. Añada 10 μl de Stop Buffer a cada pocillo de reacción.
- 16. Vuelva a sellar la placa con film Microseal B.
- 17. Utilice el agitador de placas para mezclar a 1600 r/min durante 1 minuto.
- 18. Incube la placa durante 5 minutos adicionales a temperatura ambiente.

- 19. Durante la incubación, retire el PCR Mix (o PCR Mix-1, si está utilizando kits de 96 muestras) y los índices del congelador para descongelarlos y, a continuación, colóquelos sobre hielo/gradilla fría.
- 20. Inspeccione visualmente la placa. Si el material no está en la parte inferior del pocillo o se ha salpicado sobre el film Microseal B, gire y agite la placa.
- 21. Lave tres veces con tampón de lavado de tagmentación como se describe a continuación:
 - a) Retire el Microseal B y coloque la placa en el soporte magnético-96 durante 1 minuto, permitiendo que los beads se acumulen en los pocillos junto al imán,
 - b) Con una pipeta, aspire y deseche el sobrenadante, dejando los beads en los pocillos junto al imán,
 - c) Añada lentamente 100 µl de tampón de lavado de la tagmentación a cada pocillo,
 - d) Vuelva a sellar la placa con nuevo film Microseal B; asegúrese de que el film está correctamente fijado,
 - e) Utilice el agitador de placas para mezclar a 1800 r/min durante 2 minutos a temperatura ambiente,
 - f) **PRECAUCIÓN:** Si las muestras han salpicado en el sello, haga un pulso de centrífuga a 100 x g durante 10 segundos antes de retirar el sello,
 - g) Repita los pasos a) a f) dos veces más para un total de 3 lavados.

NOTA: Antes de desechar el sobrenadante del tercer lavado, prepare la mezcla maestra de PCR como se describe a continuación.

22. Prepare una mezcla maestra de PCR de 40 μ l usando 20 μ l de agua estéril y 20 μ l de Mezcla de PCR (o Mezcla-1 de PCR si se utilizan 96 kits de prueba).

NOTA: La mezcla de PCR se utiliza para posteriores pasos del protocolo. No deseche este tubo.

- 23. Retire el Microseal B y coloque la placa en el soporte magnético-96 durante 1 minuto, permitiendo que los beads se acumulen en los pocillos junto al imán.
- 24. Con una pipeta ajustada a 100 μl, aspire y deseche el sobrenadante del lavado de tagmentación final.
- 25. Retire la placa del soporte magnético.
- 26. Añada 40 µl de la mezcla maestra de PCR a cada pocillo.
- 27. Selle la placa con film Microseal B.
- 28. Utilice el agitador de placas para mezclar a 1800 r/min durante 2 minutos a temperatura ambiente.
- 29. Haga un pulso de centrífuga de la placa a 100 x g durante 10 segundos para asegurarse de que todos los beads estén suspendidos dentro de la mezcla maestra de PCR.

Para tubos de indexación (T),

- 30. (T) Agite y haga un pulso por centrífuga de los tubos de indexación para garantizar que todo el volumen se encuentre en la parte inferior del tubo.
- 31. (T) Retire el film Microseal B de la placa de muestras.
- 32. (Τ) Añada 5 μl del índice i7 a cada pocillo, de acuerdo con el diseño de la placa en la hoja 1.0 Sample_Prep.
- 33. (T) Añada 5 μl del índice i5 a cada pocillo, de acuerdo con el diseño de la placa en la hoja 1.0 Sample_Prep. Vaya al paso 34.

Para placa de indexación (P),

- 30. (P) Utilice el agitador de placas para mezclar la placa de indexación a 1800 r/min durante 1 minuto.
- 31. (P) Centrifugue la placa de indexación a 100 x g durante 10 segundos para recoger todos los reactivos del fondo del pocillo.
- 32. (P) Retire el film Microseal B de la placa de muestras.
- 33. (P) Confirme que la orientación de la placa y el conjunto de índices sean correctos. No despegue el sello de film. Perfore el sello de film de la placa de indexación con una punta. Con una punta nueva, transfiera $10 \mu l$ de los índices combinados de la placa de indexación a cada pocillo de muestra, según la disposición de la placa en la hoja 1.0 Sample_Prep.

Vaya al paso 34.

- 34. Vuelva a sellar con film Microseal B nuevo.
- 35. Utilice el agitador de placas para mezclar a 1800 r/min durante 1 minuto a temperatura ambiente.
- 36. Haga un pulso de centrífuga de la placa a 100 x g durante 10 segundos para recoger todos los reactivos del fondo del pocillo. Realice una inspección visual para asegurarse de que los beads siguen distribuyéndose uniformemente en la solución. Si los beads no están distribuidos uniformemente, repita el agitado según el paso 35.
- 37. Coloque la placa en el termociclador y ejecute el programa de PCR de indexación con la tapa calentada a 105 °C y un volumen de reacción de 50 μl:

N.º	Paso	Temperatura	Tiempo	Número de ciclos
1	Gap fill	72°C	3 minutos	1
2	Desnaturalización			1
	inicial	98°C	3 minutos	1
3	Desnaturalización	98°C	20 segundos	
4	Annealing	60°C	30 segundos	9
5	Extensión	72°C	3 minutos	
6	Extensión final	72°C	3 minutos	1
7	Retención final	10°C	Retención	1

NOTA: Punto de parada seguro. Las librerías pueden almacenarse entre -15 °C y -25 °C durante un máximo de 1 semana.

NOTA: Si procede inmediatamente a la selección del tamaño y la purificación, asegúrese de que los beads de purificación se pongan a temperatura ambiente antes de su uso.

4.3 Selección de tamaño y purificación

1. Reúna los reactivos necesarios (volumen especificado en la tabla siguiente) y prepare según la tabla:

Reactivo	Condiciones de almacenamiento	Volumen por muestra (μL)	Preparación necesaria
Beads de purificación (Beads de purificación-1 para kits de 96 muestras)	2°C a 8°C CAJA 5	110.8	Póngalos a temperatura ambiente al menos 30 minutos. Tras el uso, devuélvalos a almacenamiento para pasos posteriores.
Agua estéril	15 °C a 30 °C. Suministrado por el usuario	215	No necesita preparación.
Etanol al 100 %	15 °C a 30 °C. Suministrado por el usuario	320	Prepare etanol al 80 % como se describe a continuación.
Tampón de resuspensión	2°C a 8°C. CAJA 5	17	Póngalo a temperatura ambiente. Tras el uso, devuélvalos a almacenamiento para pasos posteriores.

- 2. Prepare beads de purificación diluidos usando 90 μL de beads de purificación y 135 μL de agua estéril por muestra. Asegúrese de la correcta agitación de los beads de purificación antes del uso.
- 3. Prepare 600 μ l de etanol al 80 % fresco por muestra, suficiente para 2 lavados, utilizando 480 μ l de etanol al 100 % y 120 μ l de agua estéril (se incluye un volumen en exceso).
- 4. Agite y realice un pulso de centrífuga de todos los reactivos antes de usarlos.
- 5. Reúna las placas MIDI necesarias, Microseal B y placas PCR.

NOTA: El proceso tarda aproximadamente **1** hora.

- 6. Distribuya proporcionalmente 225 μl de beads de purificación diluidos en los pocillos apropiados de una placa MIDI (según el diseño de la placa de la hoja 1.0 Sample_Prep).
- 7. Pipetee los beads de tagmentación y el sobrenadante del PCR de indexación o bien agite la placa del PCR de indexación durante 1 minuto a 1800 r/min y, a continuación, añada 45 μl de cada mezcla al pocillo correspondiente de la placa MIDI que contiene beads de purificación diluidos.
- 8. Selle la placa MIDI con film Microseal B.
- 9. Utilice el agitador de placas para mezclar a 1800 r/min durante 2 minutos.
- 10. Incube la placa durante 5 minutos a temperatura ambiente. Durante esta incubación, los fragmentos más grandes se unen a los gránulos.
- 11. Placa de centrifugación a 280 x g durante 1 minuto.
- 12. Retire el Microseal B y coloque la placa en el soporte magnético-96 durante 5 minutos, permitiendo que los beads se acumulen en los pocillos junto al imán.
- 13. Transfiera 260 µl del sobrenadante a una nueva placa MIDI o limpie los pocillos de la misma placa.
- 14. Añada 20,8 μl de Purification Beads debidamente agitados (sin diluir) a cada muestra. Vuelva a sellar con film Microseal B.
- 15. Utilice el agitador de placas para mezclar a 1800 r/min durante 1 minuto.
- 16. Incube la placa durante 5 minutos a temperatura ambiente. Durante esta incubación, los fragmentos de tamaño objetivo se unen a los gránulos.
- 17. Retire el Microseal B y coloque la placa en el soporte magnético-96 durante 5 minutos, permitiendo que los beads se acumulen en los pocillos junto al imán.
- 18. Con una pipeta, aspire y deseche el sobrenadante, dejando los beads en los pocillos junto al imán.
- 19. Manteniendo la placa en el imán, lave dos veces con etanol al 80 %:
 - a) Añada 200 µl de etanol al 80 % a cada muestra,
 - b) Incube a temperatura ambiente durante 30 segundos,
 - c) Con una pipeta, aspire y deseche todo el sobrenadante,
 - d) Repita los pasos a) a c) para un total de 2 lavados.
- 20. Retire todo el sobrenadante restante con la pipeta P20.
- 21. Seque la placa al aire durante 5 minutos a temperatura ambiente, para permitir que el etanol residual se evapore.
- 22. Añada 17 μl de tampón de resuspensión a cada pocillo para eluir los fragmentos objetivo.
- 23. Selle la placa con film Microseal B.
- 24. Utilice el agitador de placas para mezclar a 1800 r/min durante 2 minutos.
- 25. Incube la placa durante 5 minutos a temperatura ambiente.
- 26. Placa de centrifugación a 280 x g durante 30 segundos.
- 27. Retire el Microseal B y coloque la placa en el soporte magnético-96 durante 5 minutos, permitiendo que los beads se acumulen en los pocillos junto al imán.
- 28. Transfiera 15 µl de sobrenadante a una nueva placa de PCR para su almacenamiento.

NOTA: Punto de parada seguro. Las librerías pueden almacenarse entre -15 °C y -25 °C durante un máximo de 1 mes.

4.4 Cuantificación Qubit (opcional)

1. Reúna los reactivos necesarios (volumen especificado en la tabla siguiente) y prepare según la tabla:

Reactivo	Condiciones de almacenamiento	Volumen por muestra (μL)	Preparación necesaria
Tampón Qubit BR	-25°C a 30°C. Suministrado por el usuario	199	No necesita preparación.
Tinte Qubit BR	-25°C a 30°C. Suministrado por el usuario	1	No necesita preparación.
Estándar BR n.º 1	2°C a 8°C. Suministrado por el usuario	10	Póngalo a temperatura ambiente.
Estándar BR n.º 2	2°C a 8°C. Suministrado por el usuario	10	Póngalo a temperatura ambiente.

- 2. Reúna los tubos Qubit necesarios y el tubo de 1,5 ml o 5 ml para la preparación de la solución de trabajo, según el volumen necesario.
- 3. Prepare dos tubos de ensayo para los estándares y uno para cada muestra.
- 4. Prepare la solución de trabajo de 200 μl Qubit con 199 μl de tampón Qubit y 1 μl de tinte Qubit por muestra/estándar que se va a cuantificar.
- 5. Agite la solución de trabajo durante 2-3 segundos y luego haga un pulso de centrífuga.
- 6. Distribuya proporcionalmente **190** μl de solución de trabajo en cada uno de los tubos estándar.
- 7. Distribuya proporcionalmente 198 μl de solución de trabajo en cada uno de los tubos de muestra.
- 8. Distribuya proporcionalmente **10** μl de solución estándar en cada uno de los tubos estándar respectivos.
- 9. Distribuya proporcionalmente $2 \mu l$ de cada muestra en el tubo respectivo.
- 10. Agite todos los tubos durante 2-3 segundos y luego haga un pulso de centrífuga.
- 11. Incube la placa durante 2 minutos a temperatura ambiente.
- 12. Inserte los tubos en el fluorímetro Qubit y tome las lecturas (consulte el protocolo Qubit para obtener más información).
- 13. Registre las lecturas de Qubit en la tabla del cuaderno de trabajo para calcular el promedio por muestra.

NOTA: El rendimiento esperado de la librería es de aproximadamente 30 ng/ μ l, pero puede variar dependiendo de la calidad y la aportación del ADN. Se espera que un rendimiento de 10 ng/ μ l o más proporcione resultados satisfactorios de enriquecimiento.

4.5 Visualización en TapeStation (opcional)

NOTA: Después de la validación del usuario, se pueden utilizar sistemas alternativos para la visualización de fragmentos, como Fragment Analyzer, Bioanalyzer o similares.

1. Reúna los reactivos necesarios (volumen especificado en la tabla siguiente) y prepare según la tabla:

Reactivo	Condiciones de almacenamiento	Volumen por muestra (μL)	Preparación necesaria
Ladder D1000 2 °C a 8 °C Suministrado por el usuario		1	Póngalo a temperatura ambiente.
Tampón de muestra	2 °C a 8 °C Suministrado por el	3	Póngalo a temperatura ambiente.
D1000	usuario		ambiente.

2. Reúna la ScreenTape D1000 necesaria, una placa de muestras de 96 pocillos (paredes finas) y sello de film.

- 3. Transfiera 1 µl de cada librería preenriquecida a una nueva placa de PCR de 96 pocillos.
- 4. Añada 1 μl de Ladder D1000 en un pocillo de referencia.
- 5. Añada 3 µl de tampón de muestra D1000 a cada pocillo de librería preenriquecida y pocillo de referencia.
- 6. Selle la placa con film de aluminio.
- 7. Agite con un vórtice IKA a 2000 rpm durante 1 minuto.
- 8. Haga un breve pulso de centrífuga para asegurarse de que todas las muestras estén en el fondo de los pocillos.
- 9. Cargue la placa de muestra en el instrumento TapeStation 2200.
- 10. Seleccione los pocillos necesarios en el software del controlador TapeStation 2200 y analice las muestras (consulte el manual de usuario de TapeStation para obtener más información).
- 11. Una vez finalizada la carrera, inicie TapeStation Analysis Software para ver los resultados (consulte el manual de usuario de TapeStation para obtener más información).
- 12. Registre los resultados en el cuaderno de trabajo.

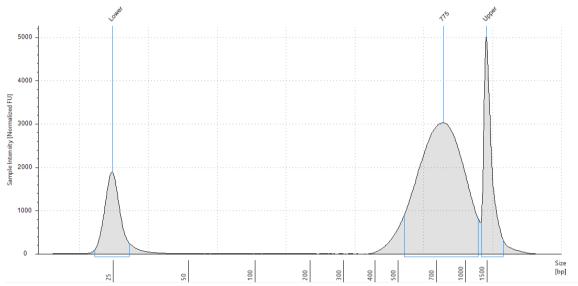


Figura 4.5.1: Imagen representativa de la traza de TapeStation para librerías.

5. Captura híbrida (flujo de trabajo Original)

5.0 Introducción al protocolo

- Siga el protocolo AlloSeq Tx a continuación en el orden que se muestra y utilizando los parámetros especificados.
- Antes de continuar, confirme el contenido del kit y asegúrese de que dispone de los insumos y el equipo necesarios.
- Para facilitar su uso, los pasos del protocolo para la captura híbrida también se detallan en *IIFU095-2_AlloSeq Tx*Hybrid Capture Workbook CE IVD. Las referencias al cuaderno de trabajo del Capítulo 5 pertenecen a este cuaderno.

5.1 Agrupación de muestras

- 1. Introduzca un ID de experimento en el campo amarillo apropiado del cuaderno de trabajo.
- 2. Introduzca el número de pools que se van a procesar en el campo amarillo correspondiente del cuaderno de trabajo.
- 3. Copie la información de la muestra apropiada de la pestaña 1.1 Vista lineal de *IFU095-1_AlloSeq Tx Library*Preparation Workbook CE IVD y péguela en la Lista de pools de librerías de *IFU095-2_AlloSeq Tx Hybrid Capture*Workbook CE IVD mediante la opción de pegado especial "Formato de valores y números".
- 4. Si se van a agrupar ≤ 12 muestras, añada 2,5 μl de cada librería que se vaya a enriquecer en un tubo/tira de PCR y añada el volumen adecuado de tampón de resuspensión al total de 30 μl, según la tabla siguiente.
- Si se van a agrupar > 12 muestras o menos, añada 2,5 μl de cada librería para enriquecerla en un tubo de microcentrifugación de 1,5 ml y proceda con el paso de concentración (1.1 del cuaderno de trabajo IFU095-2 AlloSeq Tx Hybrid Capture Workbook CE IVD).
- 6. Si está procesando varios pools, duplique esta pestaña y siga los pasos 1-5 anteriores, identificando de forma única cada pool.

NOTA: Las librerías de menor rendimiento pueden beneficiarse con el uso de un volumen de aportación de librería más grande (que no exceda el volumen total de aportación de librería combinado de 30 µL). Se recomienda el procesamiento de librerías de bajo rendimiento en un pool de enriquecimiento separado de librerías de alto rendimiento (genómicas), siempre que sea posible. Para obtener asesoramiento específico, póngase en contacto con su representante técnico local.

5.2 Concentración de pools de librerías (opcional)

1. Reúna los reactivos necesarios (volumen especificado en la tabla siguiente) y prepare según la tabla:

Reactivo	Condiciones de almacenamiento	Volumen por pool (μL)	Preparación necesaria
Purification Beads (Purification Beads-1 para kits de 96 muestras)	2 °C a 8 °C CAJA 5	58,5 - 108	Póngalos a temperatura ambiente al menos 30 minutos. Tras el uso, devuélvalos a almacenamiento para pasos posteriores.
Agua estéril	15 °C a 30 °C. Suministrado por el usuario	480	No necesita preparación.
Etanol al 100 %	15 °C a 30 °C. Suministrado por el usuario	1.920	Prepare etanol al 80 % como se describe a continuación.
Tampón de resuspensión	2 °C a 8 °C CAJA 5	32	Póngalo a temperatura ambiente. Tras el uso, devuélvalos a almacenamiento para pasos posteriores.

- 2. Prepare etanol fresco al 80 % (2 lavados por muestra) utilizando 1920 μ L de etanol al 100 % y 480 μ L de agua estéril (se incluye un volumen en exceso).
- 3. Agite y realice un pulso de centrífuga de todos los reactivos antes de usarlos.
- 4. Reúna los tubos de microcentrifugación de 1,5 ml necesarios.

NOTA: El proceso tarda aproximadamente 30 minutos.

- 5. Agrupe las librerías de muestras, en un tubo de 1,5 ml, según las instrucciones del cuaderno de trabajo de agrupación de muestras 1.0.
- 6. Añada el volumen adecuado (1,8 veces el volumen de la muestra agrupada o ver los cálculos en el cuaderno de trabajo) de Purification Beads bien agitadas en el tubo de 1,5 ml que contiene las librerías agrupadas.
- 7. Agite cada tubo a alta velocidad durante 10 segundos, 3 veces.
- 8. Haga un pulso de centrífuga rápido del tubo.
- 9. Incube a temperatura ambiente durante 5 minutos.
- 10. Coloque el tubo en un imán durante 1 minuto (hasta 2,5 minutos para 96 librerías de muestras), permitiendo que los beads se acumulen junto al imán. Si el sobrenadante se mantiene turbio, déjelo en el imán hasta que se aclare.
- 11. Con una pipeta, aspire y deseche el sobrenadante, dejando los beads en el tubo junto al imán.
- 12. Manteniendo el tubo en el imán, lave dos veces con etanol al 80 %:
 - a) Añada 800 µl de etanol al 80 % a cada tubo,
 - b) Incube a temperatura ambiente durante 30 segundos,
 - c) Con una pipeta, aspire y deseche todo el sobrenadante,
 - d) Repita los pasos a) a c) para un total de 2 lavados.
- 13. Retire todo el sobrenadante restante con la pipeta P20.
- 14. Seque el tubo al aire durante 5 minutos a temperatura ambiente, para permitir que el etanol residual se evapore.
- 15. Añada 32 μl de tampón de resuspensión al tubo para eluir las bibliotecas.
- 16. Agite cada tubo a alta velocidad durante 10 segundos, 3 veces.
- 17. Incube a temperatura ambiente durante 5 minutos.
- 18. Haga un pulso de centrífuga rápido del tubo.
- 19. Coloque el tubo sobre un imán durante 1 minuto, permitiendo que los beads se acumulen junto al imán.
- 20. Transfiera 30 μl de sobrenadante a una nueva placa de PCR para su almacenamiento.

NOTA: Punto de parada seguro. Las librerías pueden almacenarse entre -15 °C y -25 °C durante un máximo de 1 semana.

5.3 Hibridación de sondas

1. Reúna los reactivos necesarios (volumen especificado en la tabla siguiente) y prepare según la tabla:

Reactivo	Condiciones de almacenamiento	Volumen por pool (μL)	Preparación necesaria
Panel de sondas AlloSeq Tx	-15 °C a -25 °C CAJA 4	10	Póngalo a temperatura ambiente.
Tampón de hibridación 1	-15 °C a -25 °C CAJA 4	50	Coloque en Hybex a 50°C durante 15 minutos. Agite e inspeccione visualmente; si el precipitado permanece, incube a 50°C durante otros 15 minutos.
Tampón de hibridación 2	2 °C a 8 °C CAJA 5	10	Póngalo a temperatura ambiente.

- 2. Agite y realice un pulso de centrífuga de todos los reactivos antes de usarlos.
- 3. Reúna los tubos/tiras y tapas de PCR.

NOTA: No hay un punto de parada seguro hasta después del protocolo de captura. Los pools de muestras deben proceder directamente del paso de retención de 62 °C de la reacción de termociclaje de hibridación hasta la captura de beads y los pasos de lavado calentados.

NOTA: El proceso tarda aproximadamente 20 minutos en configurarse y un mínimo de 2 horas y un máximo de 18 horas en termociclador (las reacciones que se dejan durante la noche o hasta 18 horas deben mantenerse a una temperatura de 62 °C en el paso de retención final de la reacción).

4. Para cada reacción de hibridación, combine los siguientes reactivos en el orden indicado a continuación en un tubo/tira de PCR:

Reactivo	Volumen por pool (μL)
Pool de librerías de muestras	30
Panel de sondas AlloSeq Tx	10
Tampón de hibridación 1	50
Tampón de hibridación 2	10
Total	100

- 5. Con una pipeta ajustada a 70 μl, mezcle cada pocillo de reacción de hibridación 10 veces, selle y realice un pulso de impulsos.
- 6. Si la solución permanece turbia, mezcle 6-8 veces más con la pipeta.
- 7. Coloque el tubo/tira en el termociclador y ejecute el programa de hibridación con la tapa calentada a **100 °C**, y un volumen de reacción de 100 μl:

N. º	Paso	Temperatura	Tiempo	N.º de ciclos
1	Desnaturalizació			1
1	n	98°C	5 minutos	
2	Ramp Down	98 °C - 62 °C, disminuyendo 2		1
	Kamp Down	°C/ciclo	1 minuto	
3	Vaya al paso 2 para 18 ciclos más (total de 19 ciclos), disminuyendo 2 °C/ciclo.			
4	Hibridación	62°C	90 minutos	1
5	Retención final	62°C	Retención (no supere 18 horas a 62	1
			°C, incluido el paso n.º 4)	

- 8. Deje el tubo/tira en el termociclador hasta que esté listo para proceder con la captura. Asegúrese de que los beads de captura han alcanzado la temperatura ambiente y que el tampón de lavado de captura y el Hybex se calientan a 58 °C.
- 9. Reúna los reactivos necesarios (volumen especificado en la tabla siguiente) y prepare según la tabla:

Reactivo	Condiciones de almacenamiento	Volumen por pool (μL)	Preparación necesaria
Capture Beads	2 °C a 8 °C CAJA 5	250	Póngalos a temperatura ambiente al menos 30 minutos.
Tampón de lavado de captura	-15 °C a -25 °C CAJA 4	800	Precaliente hasta 58 °C antes de usarlo.
Tampón de elución de captura 1	-15 °C a -25 °C CAJA 4	28.5	Póngalo a temperatura ambiente.
2N NaOH	-15 °C a -25 °C CAJA 4	1.5	Póngalo a temperatura ambiente. Tras el uso, devuélvalos a almacenamiento para pasos posteriores.
Tampón de elución de captura 2	2 °C a 8 °C CAJA 5	4	Póngalo a temperatura ambiente.

5.4 Captura

1. Prepare una mezcla maestra de elución de los siguientes reactivos por pool que se va a capturar:

Reactivo	Volumen por pool (μL)
Tampón de elución de	
captura 1	28.5
2N NaOH (fresco)	1.5

NOTA: La solución de NaOH absorberá fácilmente CO₂ de la atmósfera, alterando el pH y el rendimiento del reactivo. Asegúrese de que el tubo de NaOH 2N está sellado cuando no se esté utilizando.

- 2. Agite y realice un pulso de centrífuga de todos los reactivos antes de usarlos.
- 3. Reúna los tubos de micropulso de 1,5 ml, los tubos/tiras y tapas de PCR necesarios.

NOTA: Este proceso tarda aproximadamente **1** hora.

- 4. Para cada reacción de hibridación, añada 250 µl de beads de captura a un tubo de 1,5 ml nuevo.
- 5. Transfiera 100 μl de cada reacción de hibridación al tubo correspondiente que contenga Capture Beads.
- 6. Agite el tubo a alta velocidad durante 10 segundos, 3 veces. No centrifugue ni haga un pulso de centrífuga.
- 7. Incube el tubo a 58 °C en Hybex durante 15 minutos.
- 8. Haga un pulso de centrífuga rápido del tubo.
- 9. Coloque inmediatamente el tubo sobre un imán durante 1 minuto, permitiendo que los beads se acumulen junto al imán.
- 10. Con una pipeta, aspire y deseche el sobrenadante, dejando los beads en el tubo junto al imán.
- 11. Lave tres veces con tampón de lavado de captura calentado como se describe a continuación:

NOTA: Cuando no lo esté usando, mantenga el tampón de lavado de captura en el Hybex para mantener una temperatura de 58 °C. Retírelo solo inmediatamente antes del añadido a la reacción en los pasos 12b y 14. Trabaje rápidamente al realizar los pasos de lavado con calor para minimizar el tiempo que el pool de muestras/tampón está a temperatura ambiente.

- a) Retire el tubo del imán,
- b) Añada 200 µl de tampón de lavado de captura calentado (58 °C),
- c) Agite el tubo a alta velocidad durante 10 segundos, 3 veces. No centrifugue ni haga un pulso de centrífuga.
- d) Incube el tubo a 58 °C en Hybex durante 5 minutos.
- e) Realice un pulso de centrífuga y coloque inmediatamente el tubo en un imán de 1,5 ml durante 1 minuto, permitiendo que los beads se acumulen junto al imán.
- f) Con una pipeta, aspire y deseche el sobrenadante, dejando los beads en el tubo junto al imán.
- g) Repita los pasos a) a f) dos veces más para un total de 3 lavados.
- 12. Retire el tubo del imán.
- 13. Añada 200 μl de tampón de lavado de captura calentado (58 °C).
- 14. Agite el tubo a alta velocidad durante 10 segundos, 3 veces. No centrifugue ni haga un pulso de centrífuga.
- 15. <u>Transfiera</u> todo el contenido (solución de lavado y beads) a un nuevo tubo de 1,5 ml.

NOTA: Este paso de transferencia es fundamental para eliminar los inhibidores de PCR que pueden afectar al rendimiento posterior.

- 16. Incube el tubo a 58 °C en Hybex durante 5 minutos.
- 17. Realice inmediatamente un pulso de centrífuga y, a continuación, coloque el tubo en un imán durante 1 minuto, permitiendo que los beads se acumulen junto al imán.
- 18. Con una pipeta, aspire y deseche el sobrenadante, dejando los beads en el tubo junto al imán.
- 19. Realice un pulso de centrífuga rápidamente y coloque inmediatamente el tubo en un imán durante 1 minuto, permitiendo que los beads se acumulen junto al imán.
- 20. Con una pipeta P20, aspire y deseche el sobrenadante, dejando los beads en el tubo junto al imán.

- 21. Agite la mezcla maestra de elución preparada anteriormente, y luego saque el tubo de reacción del imán y añada 23 µl de mezcla maestra de elución a cada tubo.
- 22. Agite el tubo a alta velocidad durante 10 segundos, 3 veces.
- 23. Incube a temperatura ambiente durante 2 minutos.
- 24. Haga un pulso de centrífuga rápido del tubo.
- 25. Coloque el tubo en un imán durante 1 minuto, permitiendo que los beads se acumulen junto al imán.
- 26. Transfiera 21 µl de sobrenadante a un nuevo tubo/tira de PCR.
- 27. Añada 4 µl de tampón de lavado de captura 2.
- 28. Mezcla de pipeta 6-8 veces. El volumen final es de 25 μl.

NOTA: Punto de parada seguro. Las librerías pueden almacenarse entre -15 °C y -25 °C durante un máximo de 24 horas.

5.5 PCR posterior al enriquecimiento

1. Reúna los reactivos necesarios (volumen especificado en la tabla siguiente) y prepare según la tabla:

Reactivo	Condiciones de almacenamiento	Volumen por pool (μL)	Preparación necesaria
Cebadores de PCR	-15 °C a -25 °C CAJA 4	5	Descongele en hielo.
PCR Mix (o PCR Mix-2 si se utilizan kits de 96 muestras)	-15 °C a -25 °C CAJA 4	20	Descongele a temperatura ambiente y luego ponga en hielo.

- 2. Agite y realice un pulso de centrífuga de todos los reactivos antes de usarlos.
- 3. Reúna los tubos de PCR necesarios que contengan librerías de captura del paso 5.4.

NOTA: Este proceso tarda aproximadamente 5 minutos en establecerse, 1:40 horas en termociclador.

- 4. Añada 5 μl de cebadores de PCR a las librerías capturadas en el tubo de PCR.
- 5. Añada 20 μl de PCR Mix (o PCR Mix-2 si está utilizando kits de 96 muestras) al tubo.
- 6. Mezcle en pipeta 10 veces.
- 7. Haga un pulso de centrífuga rápido del tubo.
- 8. Coloque el tubo/tira en el termociclador y ejecute el programa de PCR posterior al enriquecimiento con la tapa calentada a 105 $^{\circ}$ C, y un volumen de reacción de 50 μ L:

N.º	Paso	Temperatura	Tiempo	Número de ciclos
1	Desnaturalización	98°C	30 segundos	1
2	Desnaturalización	98°C	1 minuto	
3	Annealing	60°C	30 segundos	17
4	Extensión	72°C	3 minutos	
5	Extensión final	72°C	5 minutos	1
6	Retención final	10°C	Retención	1

NOTA: Punto de parada seguro. Las librerías pueden almacenarse entre -15 °C y -25 °C durante un máximo de 1 semana.

NOTA: Si procede inmediatamente a la purificación, asegúrese de que los beads de purificación se pongan a temperatura ambiente antes de su uso.

5.6 Purificación de PCR posterior al enriquecimiento

1. Reúna los reactivos necesarios (volumen especificado en la tabla siguiente) y prepare según la tabla:

Reactivo	Condiciones de almacenamiento	Volumen por pool (μL)	Preparación necesaria
Purification Beads (Purification Beads-2 para kits de 96 muestras)	2°C a 8°C CAJA 5	27	Póngalos a temperatura ambiente al menos 30 minutos.
Agua estéril	15 °C a 30 °C Suministrado por el usuario	80	No necesita preparación.
Etanol al 100 %	15 °C a 30 °C Suministrado por el usuario	320	Prepare etanol al 80 % como se describe a continuación.
Tampón de resuspensión	2°C a 8°C CAJA 5	32	Póngalo a temperatura ambiente. Tras el uso, devuélvalos a almacenamiento para pasos posteriores.

- 2. Prepare etanol fresco al 80 % (2 lavados por muestra) utilizando 480 μl de etanol al 100 % y 120 μl de agua estéril (se incluye un volumen en exceso).
- 3. Agite y realice un pulso de centrífuga de todos los reactivos antes de usarlos.
- 4. Reúna los tubos de microcentrifugación de 1,5 ml necesarios.

NOTA: El proceso tarda aproximadamente **30** minutos.

- 5. Para cada reacción de purificación, añada 27 μl de beads de purificación agitados a un tubo de 1,5 ml nuevo.
- 6. <u>Transfiera</u> 45 μl de cada reacción de PCR posterior al enriquecimiento al tubo correspondiente que contenga Purification Beads.
- 7. Agite cada tubo a alta velocidad durante 10 segundos, 3 veces.
- 8. Haga un pulso de centrífuga rápido del tubo.
- 9. Incube a temperatura ambiente durante 5 minutos.
- 10. Coloque el tubo en un imán durante 1 minuto, o hasta que todos los beads se acumulen sobre el imán.
- 11. Con una pipeta, aspire y deseche el sobrenadante, dejando los beads en el tubo junto al imán.
- 12. Manteniendo el tubo en el imán, lave dos veces con etanol al 80 %:
 - a) Añada 200 µl de etanol al 80 % a cada tubo,
 - b) Incube a temperatura ambiente durante 30 segundos,
 - c) Con una pipeta, aspire y deseche todo el sobrenadante,
 - d) Repita los pasos a) a c) para un total de 2 lavados.
- 13. Retire todo el sobrenadante restante con la pipeta P20.
- 14. Seque el tubo al aire durante 5 minutos a temperatura ambiente, para permitir que el etanol residual se evapore.
- 15. Saque el tubo del imán y añada 32 µl de tampón de resuspensión a cada tubo para eluir los fragmentos objetivo.
- 16. Agite cada tubo a alta velocidad durante 10 segundos, 3 veces.
- 17. Incube a temperatura ambiente durante 5 minutos.
- 18. Haga un pulso de centrífuga rápido del tubo.
- 19. Coloque los tubos sobre un imán durante 1 minuto, permitiendo que los beads se acumulen junto al imán.
- 20. Transfiera 30 µl de sobrenadante a un nuevo tubo de 1,5 ml para su almacenamiento.

NOTA: Punto de parada seguro. Las librerías pueden almacenarse entre -15 °C y -25 °C durante un máximo de 1 mes.

5.7 Cuantificación Qubit

1. Reúna los reactivos necesarios (volumen especificado en la tabla siguiente) y prepare según la tabla:

Reactivo	Condiciones de almacenamiento	Volumen por pool (μL)	Preparación necesaria
Tampón Qubit BR	-25 °C a 30 °C Suministrado por el usuario	199	No necesita preparación.
Tinte Qubit BR	-25 °C a 30 °C Suministrado por el usuario	1	No necesita preparación.
Estándar BR n.º 1	2 °C a 8 °C Suministrado por el usuario	10	Póngalo a temperatura ambiente.
Estándar BR n.º 2	2 °C a 8 °C Suministrado por el usuario	10	Póngalo a temperatura ambiente.

- 2. Reúna los tubos Qubit necesarios y el tubo de 1,5 ml o 5 ml para la preparación de la solución de trabajo, según el volumen necesario.
- 3. Prepare dos tubos de ensayo para los estándares y uno para cada pool.
- 4. Prepare la solución de trabajo de 200 μ l Qubit con 199 μ l de tampón Qubit y 1 μ l de tinte Qubit por muestra/estándar que se va a cuantificar.
- 5. Agite la solución de trabajo durante 2-3 segundos y luego haga un pulso de centrífuga.
- 6. Distribuya proporcionalmente **190** μl de solución de trabajo en cada uno de los tubos estándar.
- 7. Distribuya proporcionalmente 198 µl de solución de trabajo en cada uno de los tubos estándar.
- 8. Distribuya proporcionalmente 10 μl de solución estándar en cada uno de los tubos estándar respectivos.
- 9. Distribuya proporcionalmente $2 \mu l$ de cada pool en el tubo respectivo.
- 10. Agite todos los tubos durante 2-3 segundos y luego haga un pulso de centrífuga.
- 11. Incube la placa durante 2 minutos a temperatura ambiente.
- 12. Inserte los tubos en el fluorímetro Qubit y tome las lecturas (consulte el protocolo del fabricante del Qubit para obtener más información).
- 13. Registre las lecturas de Qubit en la tabla del cuaderno de trabajo para calcular el promedio de concentración.

5.8 Visualización en TapeStation (opcional)

NOTA: Después de la validación del usuario, se pueden utilizar sistemas alternativos para la visualización de fragmentos, como Fragment Analyzer, Bioanalyzer o similares.

1. Reúna los reactivos necesarios (volumen especificado en la tabla siguiente) y prepare según la tabla:

Reactivo	Condiciones de almacenamiento	Volumen por pool (μL)	Preparación necesaria
Ladder D1000	2 °C a 8 °C Suministrado por el usuario	1	Póngalo a temperatura ambiente.
Tampón de muestra D1000	2 °C a 8 °C Suministrado por el usuario	3	Póngalo a temperatura ambiente.

- 2. Reúna la ScreenTape D1000 necesaria, así como las tiras y las tapas de los tubos ópticos TapeStation.
- 3. Transfiera 1 µl de cada pool enriquecido a un nuevo tubo.
- 4. Añada 1 μl de Ladder D1000 a un tubo de referencia.
- 5. Añada 3 μl de tampón de muestra D1000 a cada tubo del pool y tubo de referencia.
- 6. Selle todos los tubos con las tapas.
- 7. Agite todos los tubos a fondo usando un vórtice IKA a 2000 rpm durante 1 minuto.
- 8. Haga un breve pulso de centrífuga para asegurarse de que todas las muestras estén en el fondo de los tubos.
- 9. Quite las tapas y cargue los tubos de muestra en el instrumento TapeStation 2200.

- 10. Seleccione los tubos necesarios en el software del controlador TapeStation 2200 y analice las muestras (consulte el manual de usuario de TapeStation para obtener más información).
- 11. Una vez finalizada la carrera, inicie TapeStation Analysis Software para ver los resultados (consulte el manual de usuario de TapeStation para obtener más información).
- 12. Registre los resultados en la tabla del cuaderno de trabajo.

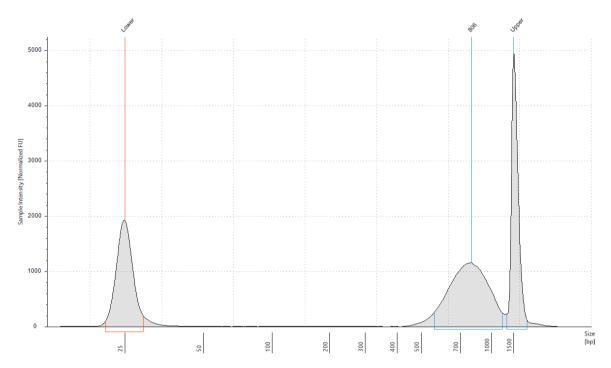


Figura 5.8.1: Imagen representativa de la traza de TapeStation para un pool de librerías enriquecidas.

6. Secuenciación

6.0 Introducción al protocolo

Las librerías AlloSeq Tx se validan para la secuenciación que se realiza en secuenciadores de Illumina, incluidos MiSeq, MiniSeq o iSeq, donde los datos de secuencia resultantes se envían en formato de archivo fastq. El número de muestras añadidas a cada pool enriquecido determinarán la celda del Flowcell de secuenciador necesario, según se indica en la sección 1.3 Contenido genético dirigido de AlloSeq Tx de este IFU.

- Siga el protocolo AlloSeq Tx a continuación en el orden que se muestra y utilizando los parámetros especificados.
- Antes de continuar, confirme el contenido del kit y asegúrese de que dispone de los insumos y el equipo necesarios.
- Para facilitar su uso, los pasos del protocolo para la secuenciación también se detallan en *IFU095-5_AlloSeq Tx Early Pooling Workbook CE IVD* (Flujo de trabajo Early Pooling) e *IFU095-3_AlloSeq Tx Sequencing Workbook CE IVD* (Flujo de trabajo Original). Las referencias al cuaderno de trabajo del Capítulo 6 pertenecen a estos cuadernos de trabajo.
- Los secuenciadores deben cargarse de acuerdo con el protocolo del instrumento, según se indica en las instrucciones.
- Si se utiliza un instrumento MiSeq, se recomienda realizar el lavado de la línea de plantilla con lejía (hipoclorito de sodio) de acuerdo con las instrucciones de la guía del usuario del MiSeq para obtener un rendimiento óptimo.

NOTA: El archivo .csv de importación de muestras de secuenciación con formato Illumina se puede generar y guardar como se describe en *IFU095-5_AlloSeq Tx Early Pooling Workbook CE IVD* (Hoja de trabajo "1.0 Sample_Prep"), desde "1.2 SampleSheet" (Flujo de trabajo Early Pooling) o *IFU095-1_AlloSeq Tx Library Preparation Workbook CE IVD* (Hoja de trabajo "1.0 Sample_Prep"), desde "1.2 SampleSheet" (Flujo de trabajo Original).

6.1 Preparación de PhiX

1. Reúna los reactivos necesarios y prepare según la tabla:

Reactivo	Condiciones de almacenamiento	Preparación necesaria
10 nM PhiX	-15 °C a -25 °C Suministrado por el usuario	Descongele y manténgalo en hielo.
2N NaOH	-15 °C a -25 °C CAJA 4	Póngalo a temperatura ambiente.
Agua estéril	15 °C a 30 °C Suministrado por el usuario	No necesita preparación.
Tampón de resuspensión	2°C a 8°C CAJA 5	Póngalo a temperatura ambiente.
HT1 (con cartucho de secuenciación)	-15 °C a -25 °C Suministrado por el usuario	Descongele y manténgalo en hielo.

1. Prepare una solución de trabajo de 0,2 NaOH utilizando 45 μl de agua estéril y 5 μl de 2N NaOH.

NOTA: La solución de NaOH absorberá fácilmente CO₂ de la atmósfera, alterando el pH y el rendimiento del reactivo. Asegúrese de que el tubo de NaOH 2N está sellado cuando no se esté utilizando.

- 2. Agite y realice un pulso de centrífuga de todos los reactivos antes de usarlos.
- 3. Reúna los tubos de microcentrifugación de 1,5 ml necesarios.

6.1.1 Dilución y desnaturalización de PhiX para carreras en MiSeq y MiniSeq

- 1. Añada 3 μl de tampón de resuspensión a un tubo nuevo.
- 2. Añada 2 μl de 10 nM PhiX al tubo.
- 3. Añada 5 µl de solución de trabajo de 0,2N NaOH (diluida arriba) al tubo.
- 4. Agite y realice un pulso de centrífuga del tubo.
- 5. Incube a temperatura ambiente durante 5 minutos.

- 6. Añada 990 µl de HT1 preenfriado al tubo que contiene PhiX desnaturalizado.
- 7. **Invierta para mezclar** (NO agite) y luego haga un pulso de centrífuga del tubo.

NOTA: Esto resulta en 1 ml de 20 pM PhiX que está listo para su uso en secuencias MiSeq. Para las secuencias MiniSeq, realice la dilución adicional ajustada a 5 pM descrita a continuación. El PhiX desnaturalizado puede almacenarse entre -15 °C y -25 °C durante un máximo de 1 mes.

6.1.2 Para carreras de MiniSeq, diluya aún más el PhiX a 5 pM

- Introduzca el volumen de dilución deseado en el cuaderno de trabajo para calcular la dilución adecuada para el PhiX
- 2. Diluya PhiX a 5 pM combinando el volumen de reactivo (ver cuaderno) en un tubo de microcentrifugación.
- 3. Invierta para mezclar (NO agite) y luego haga un pulso de centrífuga del tubo.

NOTA: El PhiX desnaturalizado puede almacenarse entre -15 °C y -25 °C durante un máximo de 1 mes.

6.1.3 Para carreras en iSeq, diluya PhiX a 20 pM (sin desnaturalizar)

- 1. Introduzca el volumen de dilución deseado en el cuaderno de trabajo para calcular la dilución adecuada para el PhiX.
- 2. Diluya PhiX a 20 pM combinando el volumen de reactivo (ver cuaderno) en un tubo de microcentrifugación.
- 3. Invierta para mezclar (NO agite) y luego haga un pulso de centrífuga del tubo.

NOTA: El PhiX desnaturalizado puede almacenarse entre -15 °C y -25 °C durante un máximo de 1 mes.

6.2 Dilución y desnaturalización para MiSeq

1. Reúna los reactivos necesarios y prepare según la tabla:

Reactivo	Condiciones de almacenamiento	Preparación necesaria
Pool de muestras enriquecidas AlloSeq Tx	-15 °C a -25 °C Preparado por el usuario	Descongele y manténgalo en hielo.
2N NaOH	-15 °C a -25 °C CAJA 4	Póngalo a temperatura ambiente.
Agua estéril	15 °C a 30 °C Suministrado por el usuario	No necesita preparación.
HT1 (con cartucho MiSeq)	-15 °C a -25 °C Suministrado por el usuario	Descongele y manténgalo en hielo.
Tampón de resuspensión	2 °C a 8 °C CAJA 5	Póngalo a temperatura ambiente.
20 pM PhiX (diluido previamente)	-15 °C a -25 °C Suministrado por el usuario	Descongele y manténgalo en hielo.

2. Prepare una solución de trabajo de 0,2N NaOH utilizando 45 μl de agua estéril y 5 μl de 2N NaOH.

NOTA: La solución de NaOH absorberá fácilmente CO₂ de la atmósfera, alterando el pH y el rendimiento del reactivo. Asegúrese de que el tubo de NaOH 2N está sellado cuando no se esté utilizando.

- 3. Agite y realice un pulso de centrífuga de todos los reactivos antes de usarlos.
- 4. Reúna los tubos de microcentrifugación de 1,5 ml necesarios.
- 5. Introduzca la concentración del pool de muestras enriquecidas, el tamaño de los fragmentos (previsto en aproximadamente 800 bp) y el volumen total deseado (recomendado 30 μl) a 4 nM en el cuaderno de trabajo para calcular la dilución adecuada para la biblioteca.

- 6. Diluya el pool de muestras a 4 nM combinando los reactivos (consulte el cuaderno) en un tubo de microcentrífuga.
- 7. Agite y realice un pulso por centrífuga del pool de muestras antes de su uso posterior.
- 8. Añada 5 μl del pool de muestras enriquecidas de 4 nM a un tubo nuevo.
- 9. Añada 5 μl de solución de trabajo de 0,2N NaOH (diluida arriba) al tubo.
- 10. Agite y realice un pulso de centrífuga del tubo.
- 11. Incube a temperatura ambiente durante 5 minutos.
- 12. Añada 990 µl de HT1 preenfriado al tubo que contiene el pool de muestras enriquecidas desnaturalizadas.
- 13. Invierta para mezclar (NO agite) y luego haga un pulso de centrífuga del tubo.

NOTA: Esto da como resultado 1 ml de un pool de muestras a 20 pM. Los pools pueden almacenarse entre -15 °C y -25 °C durante un máximo de 1 mes.

- 14. Introduzca en el cuaderno de trabajo el número de pools que se van a combinar para la secuenciación, la concentración de carga (recomendado 12 pM), el % deseado de pico de PhiX (recomendado al 1 % como mínimo) y el volumen de carga (mínimo de 600 µl), con el fin de calcular la dilución adecuada para la biblioteca.
- 15. Diluya el pool de muestras a la concentración de carga combinando los reactivos (consulte el cuaderno) en un tubo de microcentrífuga.
- 16. Invierta para mezclar (NO agite) y luego haga un pulso de centrífuga del tubo.
- 17. Deje a un lado en hielo hasta que esté listo para ser cargado en el cartucho de reactivo MiSeq para la secuenciación.

NOTA: Los pools pueden almacenarse entre -15 °C y -25 °C durante un máximo de 48 horas antes de la secuenciación.

18. Proceda a cargar el MiSeq de acuerdo con el protocolo del instrumento.

6.3 Dilución y desnaturalización para MiniSeq

1. Reúna los reactivos necesarios y prepare según la tabla:

Reactivo	Condiciones de almacenamiento Preparación nec	
Pool de muestras enriquecidas	-15 °C a -25 °C Preparado por el	Descongele y manténgalo
AlloSeq Tx	usuario	en hielo.
2N NaOH	-15 °C a -25 °C CAJA 4	Póngalo a temperatura ambiente.
Agua estéril	15 °C a 30 °C Suministrado por el usuario	No necesita preparación.
HT1 (con cartucho de	-15 °C a -25 °C Suministrado por	Descongele y manténgalo
secuenciación)	el usuario	en hielo.
Tampón de resuspensión	2 °C a 8 °C CAJA 5	Póngalo a temperatura ambiente.
200 mM Tris-HCl, pH 7,0	15 °C a 30 °C Suministrado por el usuario	No necesita preparación.
5 pM PhiX (diluido previamente)	-15 °C a -25 °C Suministrado por el usuario	Descongele y manténgalo en hielo.

2. Prepare una solución de trabajo de 0,1N NaOH utilizando 95 μl de agua estéril y 5 μl de 2N NaOH.

NOTA: La solución de NaOH absorberá fácilmente CO₂ de la atmósfera, alterando el pH y el rendimiento del reactivo. Asegúrese de que el tubo de NaOH 2N está sellado cuando no se esté utilizando.

- 3. Agite y realice un pulso de centrífuga de todos los reactivos antes de usarlos.
- 4. Reúna los tubos de microcentrifugación de 1,5 ml necesarios.

- 5. Introduzca la concentración del pool de muestras enriquecidas, el tamaño de los fragmentos (previsto en aproximadamente 800 bp) y el volumen total deseado (recomendado 100 μl) a 1 nM en el cuaderno de trabajo para calcular la dilución adecuada para la biblioteca.
- 6. Diluya el pool de muestras a 1 nM combinando los reactivos (consulte el cuaderno) en un tubo de microcentrífuga.
- 7. Agite y realice un pulso por centrífuga del pool de muestras antes de su uso posterior.
- 8. Añada 5 µl del pool de muestras enriguecidas de 1 nM a un tubo nuevo.
- 9. Añada 5 µl de solución de trabajo de 0,1N NaOH (diluida arriba) al tubo.
- 10. Agite y realice un pulso de centrífuga del tubo.
- 11. Incube a temperatura ambiente durante 5 minutos.
- 12. Añada 5 μl de 200 mM Tris-HCl, con pH 7,0.
- 13. Agite y realice un pulso de centrífuga del tubo.
- 14. Añada 985 µl de HT1 preenfriado al tubo que contiene el pool de muestras enriquecidas desnaturalizadas.
- 15. Invierta para mezclar (NO agite) y luego haga un pulso de centrífuga del tubo.

NOTA: Esto da como resultado 1 ml de un pool de muestras a 5 pM. Los pools pueden almacenarse entre -15 °C y -25 °C durante un máximo de 1 mes.

- 16. Introduzca el número de pools que se van a combinar para la secuenciación, la concentración de carga (recomendado 1,6 pM), el % deseado de pico de PhiX (recomendado al 1 % como mínimo) y el volumen de carga (mínimo de 500 μl) en el cuaderno de trabajo para calcular la dilución adecuada para la biblioteca.
- 17. Diluya el pool de muestras a la concentración de carga combinando los reactivos (consulte el cuaderno) en un tubo de microcentrífuga.
- 18. Invierta para mezclar (NO agite) y luego haga un pulso de centrífuga del tubo.
- 19. Deje a un lado en hielo hasta que esté listo para ser cargado en el cartucho de reactivo MiniSeq para la secuenciación.

NOTA: Los pools pueden almacenarse entre -15 °C y -25 °C durante un máximo de 48 horas antes de la secuenciación.

20. Proceda a cargar el MiniSeq de acuerdo con el protocolo del instrumento.

6.4 Dilución para iSeq

1. Reúna los reactivos necesarios y prepare según la tabla:

Reactivo	Condiciones de almacenamiento	Preparación necesaria
Pool de muestras enriquecidas	-15 °C a -25 °C Preparado por	Descongele y manténgalo en
AlloSeq Tx	el usuario	hielo.
Tampón de resuspensión	2 °C a 8 °C CAJA 5	Póngalo a temperatura ambiente.
20 pM PhiX (diluido previamente)	-15 °C a -25 °C Suministrado por el usuario	Descongele y manténgalo en hielo.

- 2. Agite y realice un pulso de centrífuga de todos los reactivos antes de usarlos.
- 3. Reúna los tubos de microcentrifugación de 1,5 ml necesarios.
- 4. Introduzca la concentración del pool de muestras enriquecidas, el tamaño de los fragmentos (previsto en aproximadamente 800 bp) y el volumen total deseado (recomendado 100 μL) a 1 nM en el cuaderno de trabajo para calcular la dilución adecuada para la librería.
- 5. Diluya el pool de muestras a 1 nM combinando los reactivos (ver el cuaderno de trabajo) en un tubo de microcentrífuga.
- 6. Agite y realice un pulso por centrífuga del pool de muestras antes de su uso posterior.

- 7. Introduzca el número de pools que se van a combinar para la secuenciación, la concentración de carga (recomendado 200 pM), el % deseado de pico de PhiX (recomendado al 1 % como mínimo) y el volumen de carga (mínimo de 100 µl) en el cuaderno de trabajo para calcular la dilución adecuada para la librería.
- 8. Diluya el pool de muestras a la concentración de carga combinando los reactivos (ver el cuaderno de trabajo) en un tubo de microcentrífuga.
- 9. Invierta para mezclar (NO agite) y luego haga un pulso de centrífuga del tubo.
- 10. Deje a un lado en hielo hasta que esté listo para ser cargado en el cartucho de reactivo iSeq para la secuenciación.

NOTA: Los pools pueden almacenarse entre -15 °C y -25 °C durante un máximo de 48 horas antes de la secuenciación.

11. Proceda a cargar 20 μl de pool de muestras diluidas en el cartucho iSeq de acuerdo con el protocolo del instrumento.

7. Análisis de secuencias

Los archivos Fastq resultantes deben analizarse con el software AlloSeq Assign. Los procedimientos para el uso del software AlloSeq Assign se encuentran en *IFU094 AlloSeq Assign IFU CE IVD*.

8. Guía de solución de problemas

PROBLEMA	CAUSAS POSIBLES	Solución
Rendimiento bajo o nulo de la	Calidad baja o baja	Evalúe la calidad del ADN por electroforesis en gel. El
preparación de la librería	concentración de ADN	ADN intacto debe ser de aproximadamente 3 kb con
(detectado por cuantificación	aportado	poca o ninguna evidencia de manchas en gel. Vuelva
Qubit)		a extraer el ADN y repita el procedimiento siempre
		que sea posible.
	Se ha utilizado un tipo de	Evite el uso de muestras de sangre entera que
	muestra principal incorrecto.	contengan heparina. Vuelva a extraer el ADN de la
		sangre entera conservada en ACD o EDTA y repita el
		procedimiento, siempre que sea posible.
	Librerías perdidas durante la	Consulte el protocolo. Asegúrese de que los pasos de
	captura	purificación que retienen el sobrenadante; y los pasos
		que descartan el sobrenadante se siguen
		correctamente.
		Asegúrese de que la concentración de etanol es
		correcta. El uso de agua solamente o de un contenido
		excesivo de agua puede eluir el ADN
		prematuramente.
	Librerías no eluidas de beads	Consulte el protocolo. Asegúrese de que se emplea el
	de captura	orden correcto de los tampones de elución.
		Asegúrese de retirar adecuadamente los
		reactivos/tampones antes de la resuspensión y
		elución.
		Evite el secado excesivo de ADN o pellets de ADN
		ligados a beads durante los pasos de secado. El
		secado prolongado de los pellets de ADN puede
		impedir la resuspensión y el rendimiento posterior.
	Falta de adición de reactivos	Consulte el protocolo. Asegúrese de que los reactivos
	críticos (es decir, gránulos,	se han añadido en el orden correcto y en el volumen
	cebadores de indexación,	correcto. Compruebe si hay exceso de residuos en los
	mezcla maestra de PCR,	volúmenes de reactivos. Repita el procedimiento, si
	etc.); o no se ha seguido el	se indica.
	orden correcto.	

PROBLEMA	CAUSAS POSIBLES	Solución
	Condiciones de incubación o ciclaje incorrectas.	Revise las condiciones del termociclador: Programa de tagmentación
		Programa de PCR de indexación
Rendimiento bajo o nulo del enriquecimiento (detectado por cuantificación Qubit)	Librerías perdidas durante la captura	Revise el protocolo y asegúrese de que se siguen correctamente los pasos que requieren sobrenadante retenido y los que descartan el sobrenadante. Asegúrese de que los beads de purificación diluidos estén en la concentración correcta y que los beads de purificación sin diluir (no los residuos de los beads diluidos) se empleen tras la selección del tamaño.
	Librerías no eluidas de beads de captura	Asegúrese de que se emplea el orden correcto de los tampones de elución. Asegúrese de retirar adecuadamente los reactivos/tampones antes de la resuspensión y elución. Evite el secado excesivo de ADN o pellets de ADN ligados a beads durante los pasos de secado. El secado prolongado de los pellets de ADN puede reducir la capacidad de la solución resuspendida y el posterior rendimiento.
	Condiciones de incubación o ciclaje incorrectas.	Revise las condiciones del termociclador: Programa de hibridación Programa de PCR posterior al enriquecimiento
Fragmentos de tamaño incorrecto después de la preparación de la librería o enriquecimiento (detectado mediante análisis de fragmentos)	Relación incorrecta de la muestra con los beads de purificación.	Repita el protocolo. Asegúrese de que se utiliza la concentración de beads correcta durante los pasos de selección del tamaño y purificación del protocolo.
Fallo en la secuencia		Compruebe que se ha seguido el protocolo. Consulte el manual del usuario correspondiente para conocer el modelo de secuenciador utilizado.
Baja cobertura para locus objetivo en Assign a pesar de un alto rendimiento de enriquecimiento.	Fragmentos no específicos capturados debido a una temperatura más baja durante la captura y los pasos de lavado calentado.	Asegúrese de que el sistema Hybex utilizado para los pasos de lavado calentado está calibrado y en buenas condiciones de mantenimiento. Trabaje rápidamente durante los pasos de lavado calentado para garantizar que la temperatura del pool no baje sustancialmente.

9. Información complementaria

El protocolo descrito en esta guía asume que ha leído el contenido de esta sección y se han confirmado y obtenido todos los insumos y equipos necesarios.

Licencia

Los kits AlloSeq Tx contienen NextEra Flex para reactivos de enriquecimiento fabricados por Illumina Inc. para su distribución mediante CareDx Pty Ltd

Insumos y equipo necesarios pero no suministrados

Los insumos y los equipos que se enumeran a continuación son necesarios para realizar el ensayo, pero no se incluyen en el kit AlloSeq Tx.

El protocolo se ha optimizado y validado utilizando los elementos enumerados. No se garantiza un rendimiento comparable cuando se utilizan insumos y equipos alternativos.

Insumo	N.º de proveedor/catálogo		
Agua de grado PCR	Sigma-Aldrich, W3500		
Etanol absoluto para biología molecular	Proveedor de laboratorio general		
Kit de ensayo Qubit™ dsDNA BR	Thermo Fisher Scientific, Q32850 o Q32853		
Tubos de ensayo Qubit™	Thermo Fisher Scientific, Q32856		
ScreenTape D1000 (opcional)	Agilent Technologies, 5067-5584		
Reactivos D1000 (opcional)	Agilent Technologies, 5067-5585		
Placas de muestras de 96 pocillos (opcional)	Agilent Technologies, 5067-5150		
Sello de film de placa de 96 pocillos (opcional)	Agilent Technologies, 5067-5154		
Tiras de tubos ópticos (8 tiras) (opcional)	Agilent Technologies, 401428		
Tapas de tiras de tubos ópticos (8 tiras) (opcional)	Agilent Technologies, 401425		
Uno de los siguientes kits de reactivos de secuenciación:	W MG 403 3003		
MiSeq Reagent Kit v2 (300 ciclos)MiSeq Reagent Micro Kit v2 (300 ciclos)	Illumina, MS-102-2002Illumina, MS-103-1002		
MiSeq Reagent Nano Kit v2 (300 ciclos) MiSeq Reagent Nano Kit v2 (300 ciclos)	Illumina, MS-103-1002 Illumina, MS-103-1001		
MiniSeq Mid Output Kit (300 ciclos)	 Illumina, FC-420-1004 		
iSeq 100 i1 Reagent v2 (300 ciclos)	• Illumina, 20031371		
PhiX Control v3	Illumina, FC-110-3001		
Puntas de pipeta de barrera de 20 μl	Proveedor de laboratorio general		
Puntas de pipeta de barrera de 200 μl	Proveedor de laboratorio general		
Puntas de pipeta de barrera de 1000 μl	Proveedor de laboratorio general		
Tubos de microcentrifugación de 1,5 ml	Proveedor de laboratorio general		
Tubos de 5 ml	Proveedor de laboratorio general		
Tubos de centrífuga cónicos de 15 ml	Proveedor de laboratorio general		
Depósitos de reactivos de 25 ml	Proveedor de laboratorio general		
Tiras de 8 tubos de PCR de 0,2 ml con tapas	Proveedor de laboratorio general		
Placas de PCR de 96 pocillos	Proveedor de laboratorio general		
Sellos adhesivos Microseal 'B'	Bio-Rad, MSB1001		
Placa de almacenamiento de pocillos profundos de	Thermo Fisher, AB0859 o AB0765		
polipropileno de 0,8 ml Abgene™ de 96 pocillos (placa			
MIDI, solamente flujo de trabajo Original)			
Hipoclorito de sodio (NaOCl) para lavado de	Sigma, 239305		
secuenciación posterior a la ejecución (opcional)			

N.º de proveedor/catálogo	
Proveedor de laboratorio general	
Illumina, FC-130-1005	
Thermo Fisher, 12321D	
Thermo Fisher, MR01	
Thermo Fisher, AM10027	
BioShake iQ, 1808-0506	

	Insumo	N.º de proveedor/catálogo
BioShake XP		BioShake iQ, 1808-0506
	Sistema Agilent 2200 TapeStation (opcional)	Agilent Technologies
	Fluorímetro Qubit	Thermo Fisher
	Uno de los siguientes termocicladores de 96 pocillos:	
	 Termociclador Veriti™ de 96 pocillos 	Applied Biosystems, 4375786
	 Termociclador Mastercycler Pro S 	Eppendorf, 6325
	U otro termociclador PCR con un rendimiento	
comparable. Los requisitos mínimos del termociclador PCR		
alternativo incluyen una función de tapa calentada a 105		
°C para el programa PCR de indexación y un formato de		
	bloque de tubos de 0,2 ml/placa de 96 pocillos.	
Sistema Hybex		SciGene, 1057-30-2
Bloque de tubos Hybex de 1,5 ml. (32 tubos de 1,5 ml).		SciGene, 1057-34-0
Uno de los siguientes secuenciadores:		
	Illumina MiSeq	Illumina, SY-410-1003
	Illumina MiSeq	Illumina, SY-410-1003
Illumina MiniSeq		Illumina, 20021532

10. Información de contacto

Fabricante:

CareDx Pty Ltd,

20 Collie Street, Fremantle, WA, Australia, 6160.

Tel.: +61-8-9336-4212

Correo electrónico: orders-aus@caredx.com

Sitio web: http://www.caredx.com

Distribuido por:

Asia Pacífico (APAC)

CareDx Pty Ltd,

20 Collie Street, Fremantle, WA, Australia, 6160.

Tel.: +61-8-9336-4212

Correo electrónico: orders-aus@caredx.com

Sitio web: http://www.caredx.com

Europa, Oriente Medio y África (EMEA)

CareDx AB,

Franzéngatan 5, SE-112 51 Estocolmo, Suecia.

Tel.: +46-8-508 939 00 Fax: +46-8-717 88 18

Correo electrónico: orders-se@caredx.com

Sitio web: http://www.caredx.com/

América

CareDx Lab Solutions Inc.,

901 S. Bolmar St., Suite R, West Chester, PA 19382

Tel.: 1-877-OLERUP1 Fax: 610-344-7989

Correo electrónico: orders-us@caredx.com

Sitio web: http://www.caredx.com

CH-REP:

Qarad Suisse S.A.,

World Trade Center, Avenue Gratta-Paille 2, 1018 Lausanne, Suiza,

CHRN: CHRN-AR-20002058

Asistencia técnica e información de incidentes graves:

Correo electrónico: techsupport-global@caredx.com

Cualquier incidente grave que se haya producido en relación con el producto se comunicará al fabricante y a la autoridad competente del Estado miembro o el Ministerio de Salud estatal en el que esté establecido el usuario y/o el paciente

Para más información, consulte el sitio web de CareDx (https://www.caredx.com/contact-us/).

Productos relacionados:

IVD con marca CE: AlloSeq Assign

11. Referencias

- 1. Nota técnica de Illumina. Nextera XT library prep: tips and troubleshooting (06/29/18)
- 2. Nota técnica de Illumina. DNA/RNA isolation considerations for Illumina library preparation kits. (12/21/18)
- 3. Schrader C, Schielke A, Ellerbroek L, Johne R. **PCR inhibitors occurrence, properties and removal.** 2012 J Appl Micro. 113:1014-26 (ver también las citas incluidas)
- 4. Demeke T, Jenkins GR. Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits. Anal Bianal Chem. 2009 396:1977-90.
- 5. Wilson IG. **Inhibition and Facilitation of Nucleic Acid Amplification.** 1997 Appl Environ Micro. 63:3741-51 (ver también las citas incluidas)
- 6. Al-Soud WA, Rådström P. Capacity of Nine Thermostable DNA Polymerases To Mediate DNA Amplification in the Presence of PCR-Inhibiting Samples. App Env Micro. 1998 64:3748-53.
- 7. Sidstedt M, Hedman J, Romsos EL, Waitara L, Wadsö L, Steffen CR, Vallone PM, Rådström P. Inhibition mechanisms of hemoglobin, immunoglobulin G, and whole blood in digital and real-time PCR. Anal Bianal Chem. 2018 410:2569-83
- Al-Soud WA, Rådström P. Purification and Characterization of PCR-Inhibitory Components in Blood Cells. J Clin Micro. 2001 39:485-93
- 9. Yedidag EN, Koffron AJ, Mueller KH, Kaplan B, Kaufman DB, Fryer JP, Stuart FP, Abecassis M. **Acyclovir triphosphate inhibits the diagnostic polymerase chain reaction for cytomegalovirus.** Trasplante. 1996 27;62(2):238-42.
- 10. de Lomas JG, Sunzeri FJ, Busch MP. **False-negative results by polymerase chain reaction due to contamination by glove powder.** Transfusión. 1992 32:83-5.
- 11. Burgess LC, Hall JO. UV Light Irradiation of Plastic Reaction Tubes Inhibits PCR. Biotécnicas. 1999 27:252-57.
- 12. Picelli S, Bjorklund AK, Reinius B, Sagasser S, Winberg G, Sandberg R. **Tn5 transposase and tagmentation procedures for massively scaled sequencing projects.** Res. genoma 2014 24:2033-44.
- 13. Steiniger M, Adams CD, Marko JF, Reznikoff WS. **Defining characteristics of Tn5 Transposase non-specific DNA binding.** Res. ácido nucl. 2006 34:2920-34.
- 14. CareDx AlloSure Interfering Substances report 2018.

Historial de método

Versión	Fecha	Modificación (IFU095-ES v2.0 es la traducción del texto maestro en inglés IFU095_AlloSeq Tx IFU CE IVD v9.0)
IFU095 v1.0	19Feb20	Primera versión de AlloSeq Tx IFU CE.
IFU095 v1.1	28Abr20	Se añadió el ensayo AlloSeq Tx de secuencia de fragmentos de ADN con un tamaño promedio de 700 bp, lo que significa que los polimorfismos con una separación superior a 700 bp no pueden ser escalonados, lo que puede dar lugar a ambigüedades heterocigóticas.
IFU095 v1.2	08Mayo20	Actualización de sustancias interferentes.
IFU095 v1.3	13Mayo20	Se añadió la biotina a la tabla de sustancias interferentes. Se añadieron detalles de la muestra de control a la sección 1.9.
IFU095 v1.4	20Mayo20	Se actualizó la sección Contenido y requisitos de almacenamiento del kit AlloSeq Tx de 1.4 con las siguientes correcciones: 2x tubos para tampón de lavado de tagmentación, 2x tubos para tampón de lavado de captura.
IFU095 v1.5	05Jun20	Se hicieron los siguientes cambios: - Se corrigió H714 en la tabla de reactivos de la sección 2.2, - Se añadió la referencia a la captura híbrida en la sección 3.0, - Se añadió la referencia a PhiX en Insumos - Se añadió la referencia a los cuadernos de trabajo para los puntos 3.1.5 y 3.2.5.
IFU095 v1.6	20Oct20	Se añadió una nota sobre el uso de NaOH.
IFU095 v2.0	26Mar21	Se actualizó el distribuidor de Viena a Estocolmo en la sección 8.0. Se actualizó el reactivo iSeq v1 discontinuado y se lo sustituyó por v2 en la sección 7.0. Se corrigieron los ciclos de congelación y descongelación de 25 a 12 en la sección 1.4.
IFU095 v3.0	6Mayo21	 Se actualizó lo siguiente: Sección 1: la sección de cuadernos de trabajo de apoyo se cambió a la sección 9: se añadió IFU095-5. Se incluye una explicación relación con el flujo de trabajo Original frente a Early Pooling. Se añadió contenido de genes dirigidos ASTX17.1(24)-B-IVD. Se actualizó el formato de tablas de contenidos de kit Tx. Se añadió la referencia de hisopo bucal (RUO). Se corrigió el límite de detección para ADN no concentración de ADN. Se añadieron la advertencia H318 para NaOH 2N, las advertencias de peligro H351 y H373 para los beads de captura y la advertencia H351 para el tampón de hibridación 1; se añadió información de seguridad del tampón de parada a la tabla. Sección 2: se añadió la sección de preparación de librerías (flujo de trabajo Early Pooling) Sección 3: se añadió la sección Captura híbrida (flujo de trabajo Early Pooling) Sección 4.1: se actualizó la descripción de preparación de muestras para que se corresponda con el cuaderno de trabajo actualizado Sección 4.2: se añadieron los índices del conjunto B en la tabla, se actualizó la estimación de tiempo de 2:45 horas a 1:50 horas, se cambió el paso de pulso de 280 x g durante 30 segundos a 100 x g durante 10 segundos paso 9, 21f, se cambió el paso de pulso de 280 x g durante 1 minuto a 100 x g durante 10 segundos paso 29, se cambió el paso de pulso de 280 x g durante 10 segundos a 100 x g durante 10 segundos, paso 36, se añadió el comentario 'repetir la agitación según el paso 35' en el paso 36 Sección 5.3: se ha incluido el comentario de aclaración, "Retención (no supere 18 horas a 62 °C, incluido el paso n.º 4)" en la tabla del programa de hibridación

Versión	Fecha	Modificación (IFU095-ES v2.0 es la traducción del texto maestro en inglés IFU095_AlloSeq Tx IFU CE IVD v9.0)
		• Sección 5.8: se han corregido las referencias placa/sello de TapeStation a tubos/tapas
		• Sección 6.0: se ha eliminado la tabla Esta tabla se encuentra en la Sección 1.1
		• Sección 6.2: se ha cambiado el volumen total deseado de MiSeq de 100 μl a 30 μl, para que se
		corresponda con el cuaderno de trabajo
		 Sección 6.4: comentario para aclarar que solamente se cargan 20 μl del pool diluido de 100 μl en el
		iSeq
		• Sección 9: se ha añadido la exención de responsabilidad "Solamente flujo de trabajo Original" en la
		placa MIDI, se ha añadido hipoclorito de sodio (NaOCI) para el lavado posterior a la secuenciación
		• Sección 9: se han cambiado los nombres de los reactivos de MiSeq para alinearlos con los detalles
		de los pedidos de Illumina. Se ha añadido el kit de reactivos MiSeq Reagent v3 (600 ciclos) para
		AlloSeq Tx 8, se ha añadido información para pedidos de tubos Qubit y tubo/tapa/placa/film
		TapeStation
		General: Se añadió ASTX17.1(24)-B-IVD en la portada. Se añadió "Tras el uso, devuélvalo a
		almacenamiento para pasos posteriores". Recomendaciones sobre los reactivos que deben
		conservarse para los pasos posteriores, errores menores de formato, gramática, puntuación y
		ortografía corregidos en todo el documento. Se añadió orientación adicional para 'agitar a fondo'
		todos los casos de uso de beads de purificación limpios tras los comentarios del equipo de campo. Se
		corrigieron todas las instancias de 'hybex' a 'Hybex' y 'QuBit' a 'Qubit' y 'pulse spin' a 'pulse-spin'. Se
		actualizó la Sección 2.2 y 4.2, en la tabla para Tampón de parada y se corrigió 'Preparación necesaria'
		a 'Ninguna preparación necesaria'. Se añadió "importado por" y el símbolo según ISO 15223-1-2021 e
		IVDR.
IFU095	N/D	Versión 4.0 no editada.
v4.0		
	28Enero22	Se corrigieron errores de gramática. Se corrigió la declaración de limitaciones sobre la cuantificación
IFU095		de los controles. Se corrigieron las características de rendimiento para que coincidan con el
v5.0		prospecto. Se realizaron correcciones en respuesta a ZD-2445. Sobre la base de la evaluación
		sumativa, se actualizaron los pasos 8, 12 y 18 de la sección 2.3 y el paso 7 de la sección 4.3, añadiendo
		detalles sobre la mezcla de beads de tagmentación y beads de purificación. Se actualizó el contenido
		de la caja para reflejar la configuración actualizada del kit (SCN 2021-08-13).
	31Mar22	Se añadió Tx 17 (96) Conjunto A y B a los códigos de producto, Contenido genético dirigido,
		Contenidos del kit. Se añadió un detalle en IFU con instrucciones para el uso del índice de preplaca, en
		particular en las secciones 2.2 y 4.2.
IFU095	13Jun22	Se añadió Tx 9 (96) Conjunto A y B a los códigos de producto, Contenido genético dirigido y uso
v6.0		previsto. Se eliminó ™ del logotipo de AlloSeq Tx. Se corrigieron los valores OD en Sustancias
		interferentes. Se unificó la redacción entre el cuaderno de trabajo y la IFU. Sección 5.2, punto 12;
		cambiar volumen de etanol de 200 μl a 800 μl. Sección 10: Incorporación de los requisitos de
		información de vigilancia.
IFU095	25Enero23	Fecha de actualización de copyright. Detalle adicional al principio 1.1, eliminar la información
v7.0		duplicada. Sección 1.3 actualizar la tabla para reflejar los estudios de verificación realizados por
		CareDx. Sección 1.4 eliminar "se están realizando estudios acelerados". Actualizar la sección 1.6
		Requisitos de la muestra; eliminar el hisopo bucal, añadir el tipo de muestra, la estabilidad de la
		muestra y los métodos de extracción del ADN. Actualizar la sección 1.7 -Añadir "especificidad
		analítica" al encabezado de la sección, añadir claridad sobre el EDTA como sustancia interferente.
		Secciones 1.9 y 1.10, eliminar la información no requerida. Eliminar "límite de detección" (información
		añadida a la sección 1.6 Requisitos de las muestras". Actualizar la sección 9 con otros parámetros del
		termociclador para su uso con el ensayo Tx.

Versión	Fecha	Modificación (IFU095-ES v2.0 es la traducción del texto maestro en inglés IFU095_AlloSeq Tx IFU CE IVD v9.0)
IFU095	03Nov23	Adición de un representante autorizado suizo.
v8.0		
IFU095-	03Nov23	La primera traducción al español.
ES v1.0		
IFU095-	06Mar24	Adición de la Declaración de Peligro H373 para el Hybridisation Buffer 1. Se añadió una nota sobre el
ES v2.0		uso de puntas de barrera a la sección 1.12. Las instrucciones para el manejo de cebadores de PCR en
		las secciones 3.3. y 5.5 se editaron para mayor claridad. El tubo de 5 ml se añadió como opción en la
		Sección de Preparación de la Biblioteca.